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Introduction

Graph

• A graph G is an ordered pair of (V , E ), where V is the vertex set, and
E is the set of edges, also a subset of the Cartesian product of V ×V .

• If a graph G has n vertices (i.e. |V | = n), we denote
V = {1, 2, . . . , n}, and we say there is a connection between vertex i
and j if (i , j) ∈ E .

• The adjacency matrix A provides a compact representation of G :

Aij =

{
1, if (i , j) ∈ E ,

0, o.w..

• For a random graph G , the probability of connection could be
denoted by a probability matrix P, where Pij = P((i , j) ∈ E ).

• In practice, P is not observable, instead we observe A, a noisy version
of P.
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Introduction

Random Dot Product Graph (RDPG) Model

• Let F be a probability distribution whose support is given by
Xd ⊂ Rd , then it is a d-dimensional inner product distribution on
Rd , if ∀x , y ∈ X d , we have 〈x , y〉 ∈ [0, 1].

• Let F be a d-dimensional inner product distribution with

X1,X2, . . . ,Xn
i .i .d .∼ F , collected in the rows of the matrix

XXX = [X1,X2, . . . ,Xn]T ∈ Rn×d .

• For example, thinking of the vertices as members of a social network,
the vectors together with the dot product encode semantically the
idea of differing “interests” and varying levels of “talkativeness”. The
more two members share the same interest, the more possible that
they will build a link between each other.
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Introduction

Random Dot Product Graph (RDPG) Model

• Suppose A is a random adjacency matrix given by

P(A|XXX ) =
∏
i<j

(〈Xi ,Xj〉)Aij (1− 〈Xi ,Xj〉)1−Aij ,

then we write (A,XXX ) ∼ RDPG(F , n), and say that A is the adjacency
matrix of a Random Dot Product Graph (RDPG) of dimension at
most d with latent positions given by X1,X2, . . . ,Xn.

• Moreover, if given fixed latent positions XXX , a graph G is generated
according to the distribution above, we say A is a realization of a
RDPG with latent positions XXX and denote that A ∼ RDPG(XXX ).
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Introduction

Non-identifiability

• Given a graph G distributed as an RDPG, the natural task is to
recover the latent position X that generates G . However, the RDPG
model has an inherently non-identifiability: Let XXX ∈ Rn×d be the
latent positions and W ∈ Rd×d be an orthonormal matrix, Then we
have

XXXXXXT = (XXXW )(XXXW )T ,

which implies that XXX and XXXW will give rise to the same distribution
over the graphs.
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Introduction

Adjacency Spectral Embedding

• Given a symmetric, positive semi-definite matrix Q ∈ Rn×n, the
spectral decomposition of Q is given by

Q = UQSQU
T
Q ,

where UQ ∈ Rn×n is orthonormal, and SQ is diagonal with the
eigenvalues of Q.

• Let |A| = (ATA)1/2. Given a positive integer d ≥ 1 and an adjacency
matrix A of n vertices, the Adjacency Spectral Embedding (ASE)

of A into Rd is given by X̂XX = U0S
1/2
0 , where

|A| = [U0|U⊥0 ][S0 ⊕ S⊥0 ][U0|U⊥0 ]T

is the spectral decomposition of |A|, S0 is the diagonal matrix with d
largest eigenvalues of |A|, and each column of U0 ∈ Rn×d is the
corresponding eigenvector.
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Introduction

Laplacian Spectral Embedding

• On the other hand, we may define the Laplacian Spectral
Embedding (LSE) of A in the following way:

• Given an adjacency matrix A, let L(A) = D−1/2AD−1/2 denote the
normalized Laplacian of A, where D is the diagonal matrix whose
diagonal entries Dii =

∑
j 6=i Aij .

• Given a positive integer d ≥ 1 and an adjacency matrix A of n

vertices, the LSE of A into Rd is given by X̆XX = U1S
1/2
1 , where

|L(A)| = [U1|U⊥1 ][S1 ⊕ S⊥1 ][U1|U⊥1 ]T

is the spectral decomposition of |L(A)|, S1 is the diagonal matrix
with d largest eigenvalues of |L(A)|, and each column of U1 ∈ Rn×d

is the corresponding eigenvector.
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Introduction

Consistency of Embeddings

Theorem (Consistency of ASE (Lyzinski, Vince et al. 2016))

Let Am ∼ RDPG(XXXm) for m ≥ 1 be a sequence of RDPGs, where XXXm is

assumed to be of rank d for all sufficiently large m. And let X̂XX
m

be the
ASE of Am, and let XXXm

i , X̂XX
m

i be the i-th row of XXXm, X̂XX
m

. Then as m→∞,
the probability that there exists Wm ∈ O(d) such that

max
1≤i≤m

‖X̂XX
m

i −WmXXX
m
i ‖ ≤

Cd1/2 log2 m

δ1/2(Pm)

goes to 1, i.e. this event occurs asymptotically almost surely. C > 0 is
some fixed constant, Pm = XXXm(XXXm)T , and δ(P) = maxi

∑m
j=1 Pij .
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Introduction

Distributional Results

Theorem (CLT for Rows of ASE (Athreya, Avanti, et al. 2016))

Let (Am,XXXm) ∼ RDPG(F ) be a sequence of adjacency matrices and
associated latent positions of a d-dimensional RDPG according to a inner
product distribution F supported on X d ⊂ Rd . Let Φ(x ,Σ) denote the
CDF of a multivariate Gaussian with mean 0 and covariance matrix Σ
evaluated at x ∈ Rd , then there exists a sequence of (Wm)∞m=1 ⊂ O(d),
such that for any z ∈ Rd and fixed index i ,

lim
m→∞

P(
√
m(X̂XX

m

i −WmXXX
m
i ) ≤ z) =

∫
X d

Φ(z ,Σ(x))dF (x),

where

Σ(x) = ∆−1E[(xTX1 − (xTX1)2)X1X
T
1 ]∆−1, and ∆ = E[X1X

T
1 ].
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Introduction

Distributional Results

Theorem (CLT for Rows of LSE (Tang, Priebe 2018))

Let (Am,XXXm) ∼ RDPG(F ) be a sequence of adjacency matrices and
associated latent positions of a d-dimensional RDPG according to a inner
product distribution F supported on X d ⊂ Rd . Then there exists a
sequence of (Wm)∞m=1 ⊂ O(d), s.t. for any z ∈ Rd and fixed index i ,

lim
m→∞

P(m(X̆XX
m

i −Wm
XXXm

i√∑
j(XXX

m
i )TXXXm

j

) ≤ z) =

∫
X d

Φ(z , Σ̃(x))dF (x),

Σ̃(x) = E[(
∆̃−1X1

XT
1 µ

− x

2xTµ
)(
XT

1 ∆̃−1

XT
1 µ

− xT

2xTµ
)
xTX1 − xTX1X

T
1 x

xTµ
],

µ = E[X1] ∈ Rd , ∆̃ = E[
X1X

T
1

XT
1 µ

] ∈ Rd×d .

Hanwen Hu On Random Graphs April 21, 2022 11 / 21



Semiparametric Hypothesis Test for Graph Data

Semiparametric Hypothesis Test for Graph Data

• Given two adjacency matrices A, B for two graphs with the same
number of nodes, we want to conduct a hypothesis test on whether
they share the same latent position, up to an orthonormal
transformation. That is, if we assume A ∼ RDPG(X ) and
B ∼ RDPG(Y ), then the null hypothesis H0 is given as

X =W Y , i.e. ∃W ∈ O(d),X = YW .

• A Bootstrapping hypothesis test procedure is proposed by Tang et.al.
(2017).
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Semiparametric Hypothesis Test for Graph Data

Semiparametric Hypothesis Test for Graph Data

Algorithm 1: Bootstrapping procedure for the test: H0 : X =W Y

Input: Embedding dimension d , Number of bootstrap samples b.
procedure Bootstrap(X ,T , b)

d ← ncol(X ); SX ← ∅.
for i = 1:b do

Ai ← RDPG(X̂ ); Bi ← RDPG(X̂ )
X̂i ← ASE(Ai , d); Ŷi ← ASE(Bi , d)
Ti ← minW ‖X̂i − ŶiW ‖F ; SX ← SX ∪ Ti

end for
return p ← (|{s ∈ SX : s − T ≥ 0}|+ 0.5)/b

end procedure
1. X̂ ← ASE(A, d); Ŷ ← ASE(B, d); T ← minW ‖X̂ − ŶW ‖F
2. pX ← Bootstrap(X̂ ,T , b), pY ← Bootstrap(Ŷ ,T , b)
3. p ← max{pX , pY }
Output: p-value of the hypothesis test.
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Semiparametric Hypothesis Test for Graph Data

Application Example

• Consider the neural imaging graphs obtained from the test-retest
diffusion MRI and magnetization-prepared rapid acquisition gradient
echo (MPRAGE) data from Landman et al. (2011). It consists of 42
images, one pair from each of 21 subjects.

• The scans are converted into spatially aligned graphs with n = 70
vertices, in which each vertex corrresponds to a particular voxel in a
reference coordinate system to which the image is registered. The
graphs are then embedded into R4.

• Pairwise comparisons are done between 42 graphs.
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Semiparametric Hypothesis Test for Graph Data

Application Example

• In general, the test procedure fails to reject the null hypothesis when
the two graphs are for the same subject.

• Besides, it also frequently reject the null hypothesis when the two
graphs are from scans of different subjects.
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Connection with Stratified Space

Graph Space as a Stratified Space - preliminary work

• Suppose a graph has n vertices, then there are
(n

2

)
possible edges in

the graph. If we only care about edges between vertices, then there

are 2(n2) possible types of graphs in total.
• Moreover, if we generalize to the graphs with weighted edges, then

a graph with k edges determines a stratum with k positive
parameters over the points of an open k-dimensional orthant.
• Therefore, a graph space consisting of all graphs with n vertices is a

stratified space with
(n

2

)
+ 1 strata, where a coordinate in each

dimension may, for example account for the distance of a data point
on the corresponding edges, from a staring vertex, assuming a
directed graph.
• For the tree space version in Omar’s final presentation see Billera et

al.(2001).
• The dimension of this graph space is

(n
2

)
. In particular, there is one

top dimensional stratum with dimension
(n

2

)
. And for any

1 ≤ k ≤
(n

2

)
, there will also be one co-dimension k strata with

dimension
(n

2

)
− k .
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Connection with Stratified Space

Graph Space as a Stratified Space

• The graph space G3 consisting of all graphs of 3 vertices with
weighted edges consists of 4 strata and has a dimension of 3.

• Below, each stratum has a dimension of 0, 1, 2 and 3.
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Connection with Stratified Space

Combining RDPG into Stratified Space Data

• In the process of multi-graph inferences, if graph data with n vertices
and arbitrarily connected weighted edges are given, we can model the
connection of edges by inferring the latent positions of each vertex.
This provides an estimate of probability distribution for a graph to lie
on each stratum.

• Furthermore, The location of a graph on each stratum is determined
by the weights of each of its edges.
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Connection with Stratified Space

Conclusion

• This presentation introduces the main idea of Random Dot Product
Graph model, including the inference of latent positions via ASE and
LSE. Some asymptotic results about the embeddings are given. An
example of graph hypothesis test procedure is given.

• Besides, we explores the way to model a graph space as a stratified
space, to combine the idea of RDPG inference with the view of seeing
graph space as a stratified space.
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Connection with Stratified Space
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