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Introduction

What is the difference between SARS-CoV-2 and Covid-19?

SARS-CoV-2 is the virus.

stands for Severe Acute Respiratory Syndrome Coronavirus-2.
named by The International Committee on Taxonomy of Viruses
(ICTV).

Covid-19 is the disease.

stands for Coronavirus disease 2019.
named by World Health Organization (WHO).
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Introduction

What is a Phylogenetic Tree?

A phylogenetic tree, also known as a phylogeny, is a diagram that
depicts the lines of evolutionary descent of different species,
organisms, or genes from a common ancestor.
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Motivation

Trees represent various types of hierarchical relationships between
species, organisms, and genes from a common ancestor.

Phylogenetic analysis is important for clarifying the evolutionary
pattern of multigene families and understanding the process of
adaptive evolution at the molecular level.

Deoxyribonucleic acid (DNA) can be used to draw a phylogenetic tree.

Fig.1. Phylogenetic tree shows genetic distance between SARS-Cov-2 specimens (n=8) and
exposures histories.
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Stratified Space

Stratified Space (Space With A Manifold Stratification) is a metric space
M that admits a filtration
∅ = F−1 ⊆ F0 ⊆ F1 · · · ⊆ Fn ⊂ · · · = M = ∪iFi , By closed subspaces, such
that for each i = 1, . . . , n,Fi/Fi−1 is empty or is an i-dimensional
manifold, called the i-th stratum.

Examples of stratified sample spaces, which are not themselves
manifolds include similarity shape spaces (Kendall et.al.(1999)), affine
shape spaces (Groisser & Tagare (2009)) and projective shape spaces
(Mardia & Patrangenaru (2005)).

Spaces of positive semi-definite matrices, which arise as data points in
Diffusion Tensor Imaging (Schwartzman et.al. (2008)), and tree spaces
(Billera et.al. (2001), Wang & Marron(2007)), are additional examples of
stratified sample spaces.
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Stratified Space

Sticky C.L.T. on Spiders

To define a Spider, consider an arbitrary nonempty set K ≥ 3 and, for
each of its elements, i , define the ray(leg) Li = {(i , x) : x ∈ [0,∞)}. The
Spider is formed by joining the rays together at the origin.

SK = {(i , x) : i ∈ K , x ∈ [0,∞)}

where (i , 0), . . . , (j , 0) for all i , j ∈ K , the equivalence class of all points of
the form (i , 0), we denote by 0, named center C .
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Stratified Space

Sticky C.L.T. on Spiders

Assume Xi , i = 1, . . . , n are i.i.d. random objects on a spider SK , having
legs Li , i = 1, . . . ,K and center C . Further, assume the intrinsic mean µI

exists and the intrinsic variance is finite. Any probability measure Q on SK
decomposes uniquely as a weighted sum of probability measures QK on
the legs LK and an atom Q0 at C .

More precisely, there are nonnegative real numbers {wk}pk=0 summing to 1
such that, for any Borel set A ⊆ Sp , the measure Q takes the value

Q(A) = w0Q0(A ∩ C ) +

p∑
k=1

wkQk(A ∩ Lk).
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Stratified Space

Assume w0 = 0 and x ∈ La, the Fréchet function is defined as follows,

F (x) =
K∑

i=1,i ̸=a

∫ ∞

0
(x + u)2wiQi (du) +

∫ ∞

0
(x − u)2waQa(du)

= x2
K∑
i=1

∫ ∞

0
wiQi (du) + 2x [

K∑
i=1,i ̸=a

∫ ∞

0
uwiQi (du)

−
∫ ∞

0
uwaQa(du)] +

K∑
i=1

∫ ∞

0
u2wiQi (du)

= x2 + 2[
K∑

i=1,i ̸=a

vi − va]x + const.

where vi =
∫∞
0 uwiQi (du).
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Stratified Space

If there exists an unique minimizer for the Fréchet function F (x), the
minimizer is called intrinsic mean µI (based on the intrinsic distance). The
minimizer of the quadratic form is x∗ = va −

∑
i ̸=a vi , where

x ∈ La = {(a, u) : u ∈ [0,∞)}.
Thus, we have three situations:
(i) va −

∑
i ̸=a vi > 0 or va >

∑
i ̸=a vi ,

(ii) va −
∑

i ̸=a vi = 0 or va =
∑

i ̸=a vi and
(iii) va −

∑
i ̸=a vi < 0 or va <

∑
i ̸=a vi .

In case(i), we have µI well defined on La, then classical C.L.T is applied.
In case (ii), we can fold other legs into that half line opposite to La then

apply C.L.T. and since the negative part is undefined, so the result
goes to a positive truncated normal distribution.

In case (iii), for any a ∈ {1, . . . ,K}, we have µI = C , which shows that
intrinsic mean µI sticks to the center C .
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Stratified Space

Theorem
1 va >

∑
i ̸=a vi for some (unique) a ∈ {1, . . . ,K}, then µI ∈ La and for

n large enough X̄n ∈ La and
√
n(X̄n − µI ) has asymptotically a normal

distribution.

2 va =
∑

i ̸=a vi for some (unique) a ∈ {1, . . . ,K}, then after folding the

legs Li , i ̸= a, into one half line opposite to La,
√
n(X̄n − µI ) has

asymptotically a positive truncated normal distribution.

3 va <
∑

i ̸=a vi for all a ∈ {1, . . . ,K}, then /muI = C and there is n0
s.t. ∀n ≥ n0, then X̄n = 0 a.s.
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Stratified Space

Sticky C.L.T. on Piece-wise Linear Stratified Spaces

Consider the simplest graph G , which is formed from a spider S3 with
finite legs and connected two legs. Assume Xi , i = 1, . . . , n are i.i.d. r. o’s.
on G . Denote a weighted sum of probability measures Qk on the legs Lk
and an atom Q0 at C .
To build Fréchet function, we could cut L4 at a point then bend the two
pieces to form new legs L̃2 and L̃3, and then rescale legs to unit length.
Thus, Xi , i = 1, . . . , n are i.i.d. random objects on G with probability
measures Q̃k on the legs L̃k , {w̃k}pk=0 summing to 1.
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Stratified Space

Therefore, the problem becomes computing intrinsic mean on unit-length
spider S3. Assume x ∈ La, the Fréchet function is defined as follows,

F (x) =
3∑

i=1,i ̸=a

∫ 1

0
(x + u)2w̃i Q̃i (du) +

∫ 1

0
(x − u)2w̃aQ̃a(du)

= x2 + 2[
3∑

i=1,i ̸=a

ṽi − ṽa]x + const.

where ṽi =
∫ 1
0 uw̃i Q̃i (du).

The intrinsic mean µI on the graph G would follow a sticky C.L.T., if
certain inequalities hold true.
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Stratified Space

Open Book

Consider a 2-dimension Spider, which is called Open Book. The Open
Book is formed by joining half spaces(leaves), which are defined as
Li = {(i , x1, x2) : x1, x2 ∈ [0,∞)}i = 1, . . . ,K , together at the spine
S = [0,∞).

OK = {(i , x1, x2) : i ∈ K , x1, x2 ∈ [0,∞)}.
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Stratified Space

Before discussing the Fréchet function and stickiness of the intrinsic mean,
one have to define the distance d(x, y). If two points
x = (x1, x2), y = (y1, y2) are on the same leaf, the distance between two
points d(x, y) = ∥x− y∥. If two points x, y are on the different leaves, one
could replace point x by x’ onto the half space opposite to La, then the
distance is defined as d(x, y) = ∥x’− y∥, where x’ = (x1,−x2).
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Stratified Space

Assume Xi , i = 1, . . . , n are i.i.d. random objects on Ok . Denote a
weighted sum of probability measure Qk on the legs Lk and an atom Q0 at
C . Further, assume the intrinsic mean µI exists and the intrinsic variance
is finite. W.L.O.G., assume w0 = 0 and x ∈ La, the Fréchet function is
defined as follows,

F (x) =
K∑

i=1,i ̸=a

∫
OK

∥x’− u∥2wiQi (du) +

∫
OK

∥x− u∥2waQa(du)
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Stratified Space

F (x) = ∥x∥2 −
∑
i ̸=a

2

∫ ∞

o
⟨x’,u⟩wiQi (du)− 2

∫ ∞

o
⟨x,u⟩waQa(du)

+
K∑
i=1

∫ ∞

0
∥u∥2wiQi (du)

= x21 − 2[
K∑
i=1

∫ ∞

0
u1wiQ

(1)
i (du1)]x1 + x22 − 2[

∫ ∞

0
u2waQ

(2)
a (du2)

−
∑
i ̸=a

∫ ∞

0
u2wiQ

(2)
i (du2)]x2 + const.

= x21 − 2
K∑
i=1

v
(1)
i x1 + x22 − 2[v

(2)
a − sumi ̸=av

(2)
i ]x2 + const.

where v
(j)
i =

∫∞
0 uwiQ

(j)
i (du).
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Stratified Space

To minimize F (x) is to minimize the quadratic form for x1, x2 and the
solution is

x∗1 =
∑K

i=1 v
(1)
i , x∗2 = v

(2)
a −

∑
i ̸=a v

(2)
i .

Since v
(j)
i ≥ 0, x∗1 is always non-negative.

Thus, one could apply C.L.T. on x∗1 . However, for x∗2 , one have to discuss
the three situations as did for the spider spaces. Therefore, in this case, if
one separate the space into two directions, the stickiness of intrinsic mean
would only occur on one direction, which is in a lower dimensional space.

If for all a, v
(2)
a <

∑
i ̸=a v

(2)
i , the intrinsic mean would stick to the spine S,

but still has one direction free, mathematically, the intrinsic mean would
follow a univariate normal distribution on the spine S .
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Stratified Space

Also, we could consider 2D version graphs(see figure below). To discuss
the stickiness, we could cut along a line on the top surface, then bend and
re-scale to form an open book structure with boundaries. Therefore, the

intrinsic mean would stick to the spine if for all a, v
(2)
a <

∑
i ̸=a v

(2)
i .
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Stratified Space

Consider a piece-wise linear stratified space MK , which is formed by
joining n-dimensional half space
Li = {(i , x1, . . . , xn) : x1, . . . , xn ∈ [0,∞)}i = 1, . . . ,K , together at a
m-dimensional space (m < n). Let d = n −m, the space MK is defined as

MK = {(i1, . . . , id , x1, . . . , xn) : i1, . . . , id ∈ K , x1, . . . , xn ∈ [0,∞)}.
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Stratified Space

Assume x ∈ La, the Fréchet function is defined as

F (x) =
n∑

k=d+1

[x2k − 2
K∑
i=1

v
(k)
i xk ] +

d∑
l=1

[x2l − 2[v
(l)
a − sumi ̸=av

(l)
i ]xl ] + const.

Set El = { for some a ∈ {1, . . . ,K}, v (l)a ≥
∑

i ̸=a v
(l)
i }, then E c

l = { for all

a ∈ {1, . . . ,K}, v (l)a <
∑

i ̸=a v
(l)
i }, l = 1, . . . , d .

1 For all l = 1, . . . , d , El occurs, for n large enough, X̄n ∈ La and√
n(X̄n − µI ) → N+, where N+ = max(0,N(0,Σ)).

2 For some l = 1, . . . , d ,E c
l occurs, µi would stick to a lower

dimensional spine space and would follow a multivariate normal
distribution on the low dimensional spine space.
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Tree-Building Methods

Commonly used methods are classified into three major groups:

Distance Matrix Methods.

Unweighted Pair-Group Method using arithmetic Averages
(UPGMA).
Least Squares (LS) Methods (Ordinary - Weighted).
Minimum Evolution (ME) Method.
Neighbor Joining (NJ) Method.

Maximum Parsimony (MP) Methods.

Unweighted MP.
Weighted MP.

Maximum Likelihood Methods.
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UPGMA Practical Example

a set of DNA sequences:
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UPGMA Practical Example

Aligning the DNA sequences:
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UPGMA Practical Example

Comparing the first two DNA sequences:
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UPGMA Practical Example

Finding the similarities:
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UPGMA Practical Example

Finding the differences:
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UPGMA Practical Example

Building the distance matrix :
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UPGMA Practical Example

Comparing another pair of sequences:
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UPGMA Practical Example

Finding the similarities:
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UPGMA Practical Example

Finding the differences:
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UPGMA Practical Example

Repeating the process with all pairs:
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UPGMA Practical Example

Finding the smallest distance to start building the tree:

33 / 53



UPGMA Practical Example

Grouping the most likely taxon (plural taxa):
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UPGMA Practical Example

Building a new distance matrix after grouping the most related taxon:
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UPGMA Practical Example

Repeating the process with the second pair:
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UPGMA Practical Example

Repeating the process with the third pair:
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UPGMA Practical Example

Finishing the current distance matrix and updating the tree diagram:
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UPGMA Practical Example

Building a new distance matrix:
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UPGMA Practical Example

Finding the distances for the new matrix:
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UPGMA Practical Example

Repeating the process for the second pair:
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UPGMA Practical Example

Repeating the process for the third pair:
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UPGMA Practical Example

Finishing the current distance matrix and updating the tree:
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UPGMA Practical Example

a set of DNA sequence:
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UPGMA Practical Example

Building a new distance matrix::
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UPGMA Practical Example

Repeating the process and finishing the current matrix:
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UPGMA Practical Example

Updating the tree diagram:
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UPGMA Practical Example

The final tree model:
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UPGMA Practical Example

The process:

DNA Sequences ⇒ Phylogenetic Tree
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Thank you!
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