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. r natural
“groupin I, we must first develop
a quantltatlve cale on which to mea sure the association
(similarity) between objects




' The number of ways of sorting n objects into k nonempty groups is a Stirling number of the second

k
kind given by (1/k!) > (=1)! (,:)1" (See [1].) Adding these numbers for k = 1,2,..., n groups, we
)J=0

obtain the total number of possible ways to sort n objects into groups.

Ex: sorting cards based on suit (hearts, spades, clubs, and
diamonds), sorting cards based on whether they are face

cards or not



Whe mity is usually

1ndlcate by son i rast varzables are

usually grouped on the basis of correlatlon coefficients or like
measures of association.




Distances and Similarity Coefficients for Pairs of Items

We discussed the notion of distance in Chapter 1, Section 1.5. Recall that the
Euclidean (straight-line) distance between two p-dimensional observations (items)
x' =[x, x3...,x,]and y’ = [y, y,-.., Y] is, from (1-12),

d(x,y) = V(21 = y1)* + (x2= ) + -+ (xp, = yp)°
= Vix-y(x-y) e=l)

The statistical distance between the same two observations is of the form [see (1-23)]

d(x.y) = V(x - y)'A(x — y) (122)

Ordinarily, A = S”), where S contains the sample variances and covariances.
However, without prior knowledge of the distinct groups, these sample quantities
cannot be computed. For this reason, Euclidean distance is often preferred for
clustering.

Another distance measure is the Minkowski metric

P 1/m
d(x,y) = [2 | x; - y.-l”'] (12-3)

i=1

For m = 1, d(x,y) measures the “city-block” distance between two points in p
dimensions. For m = 2, d(x,y) becomes the Euclidean distance. In general, varying
m changes the weight given to larger and smaller differences.




d(x,y)=2'x' Yl

Canberra metric:
® o (xi+ y)

P
2 D, min(x;, yi)
Czekanowski coefficient: d(x,y) =1 — ";l_

l 21 (xi + »i)




When items cannot be represented by meaningful p-dimensional measurements, pairs of
items are often compared on the basis of the presence or absence of certain
characteristics.

The presence or absence of a characteristic can be described mathematically by
introducing a binary variable, which assumes the value 1 if the characteristic is present
and the value O if the characteristic is absent. For p = 5 binary variables, for instance, the
"scores" for two items 1 and k might be arranged as follows:

Variables

Item i
Item k

In this case, there are two 1-1 matches, one 0—0 match, and two m.ismatches.
Let x;; be the score (1 or 0) of the jth binary variable on the ith item and x, ; be the
score (again, 1 or 0) of the jth variable on the kth item,j = 1,2,..., p. Consequently,

0 if xj;=x; =1 or x; = xx;=0 (12-6)

- 32 =
(xij = X)) {1 if x;; # Xk;

P
and the squared Euclidean distance, Y, (x;; — X«;)’, provides a count of the number
=1

I_ . . - - .
of mismatches. A large distance corresponds to many mlsmatches—that.ls, dls§um-
lar items. From the preceding display, the square of the distance between items and
k would be

253(;.:,-,-—x,‘,-)2=(1—1)2+(0—1)2+(o—0)2+(1—1)2+(1-0)2
j=1
=2




1 0 Totals

.1 a b a+ b
Itemi | . y et g (12-7)

Totals 1 atc b+d p=a+b+c+d

In this table, a represents the frequency of 1-1 matches, b is the frequency of 1-0
matches, and so forth. Given the foregoing five pairs of binary outcomes, a = 2 and

b=c=d=1.

[




Monotonicity is important, because
some clustering procedures are not
affected if the definition of similarity is
changed in a manner that leaves the
relative orderings of similarities
unchanged. The single linkage and
complete linkage hierarchical
procedures discussed in section 12.3
are not affected. For these methods,
any choice of the coefficients 1, 2, and
3 in table 12.1 will produce the same
groupings. Similarly, any choice of the
coefficients 5, 6, and 7 will yield
identical groupings.

Table 12.1 Similarity Coefficients for Clustering Items*

Coefficient Rationale

a+d
P
2(a + d)
"2(a+d)+b+c
a+t+d

& dl'?(ﬁ c_) Double weight for unmatched pairs.

Equal weights for 1-1 matches and 00 matches.

Double weight for 1-1 matches and 0-0 matches.

No -0 matches in numerator.

No 0—0 matches in numerator or denominator.
(The 00 matches are treated as irrelevant.)

No 0-0 matches in numerator or denominator.
Double weight for 1-1 matches.

No 0-0 matches in numerator or denominator.
Double weight for unmatched pairs.

Ratio of matches to mismatches with 0—0 matches
excluded.

*(p binary variables; see (12-7).]
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e 12.1 (Calculating the values of a similarity coefficient) Suppose five indi-
viduals possess the following characteristics:

Eye Hair
Height  Weight color color Handedness Gender
Individual 1 68 in 140 1b green blond right female
Individual2 73 in 1851b brown  brown right male
Individual 3 67in 1651b blue blond right male
Individual4 64 in 1201b brown  brown right female
Individual 5 76 in 2101b brown  brown left male
Define six binary variables X1, X2, X3, X4, Xs, X as
- 1 height = 72in. e 1 blond hair
1= 10 height < 72in. 4~ 10 notblond hair
pren 1 weight = 1501b X. = 1 right handed
2= 10 weight < 1501b 57 10 lefthanded
_J1 browneyes _J1 female
X3 = {0 otherwise Xe = {0 male
The scores for individuals 1 and 2 on the p = 6 binary variables are
J X| Xz X3 X4 XS, Xs
Individual 1 0 0 0 1 1 1
2 1 1 1 0 1 0
and the number of matches and mismatches are indicated in the two-way array
Individual 2
1 0 | Totl
> 1 1 2| 3
Individual 1 0 3 0 ‘ 3
Totals 4 2 | 6

Employing similari —— . ' )
computg ying similarity coefficient 1, which gives equal weight to matches, we

are 210
P 6

A\ =

Continuing with similarity coefficient 1 i
' , we calculate the remaining similarit
numbers fo indivi : : . ’
o r pairs of individuals. These are displayed in the 5 X 5 symmetric
Individual
1 2 3 4 5

Individual

AW DWW -

O OVb OMh O\ =

€

L N T S

N AN b
AN
—

Based on the magnitudes of the similarity
coefficient, we conclude that individuals 2
and 5 are most similar while individuals 1
and 5 are least similar.



\o When the variables are binary, the data can again be arranged in the form of 2
contingency table. This time, however, the variables, rather than the items, delineate
the categories. For each pair of variables, there are n items categorized in the table,
With the usual 0 and 1 coding, the table becomes as follows:

Variable k
1 0 Totals

1 a

a+ b

: . b
Variable i 0 p d c+d (12-10)

Totals a+c b+d n=a+b+c+d

For instance, variable i equals 1 and variable k equals O for b of the n items.
The usual product moment correlation formula applied to the binary variables
in the contingency table of (12-10) gives (see Exercise 12.3)

_ ad — bc
" T @+ b)(c + d)(a + ¢) (b + D)7

(12-11)

This number can be taken as a meéasure of the similarity between the two variables.




Table 12.2 Numeralsin 11 Languages

English Norwegian Danish Dutch German French Spanish Italian Polish Hungarian Finnish
(E) (N) (Da) (Du) (G) (Fr) (Sp) (1) ) (H) (Fi)

one en en een eins un uno uno jeden egy yvksi

two to to twee zwei deux dos due dwa ketto kaksi
three tre tre drie drei trois tres tre trzy harom kolme
four fire fire vier vier guatre cuatro guattro cztery negy nelja

five fem fem vijf funf cing cinco cinque piec ot viisi

six seks seks zZzes sechs six seis sei szesc hat kuusi
seven sju syv zeven sieben ‘sept siete sette siedem het seitseman
eight atte otte acht acht huit ocho otto osiem nyolc kahdeksan
nine ni ni negen neun neuf nueve nove dziewiec kilenc yhdeksan
ten ti ti tien zehn dix diez dieci dziesiec tiz kKkymmenen

Table 12.3 Concordant First Letters for Numbers in 11 Languages

N Da Du G Fr Sp 1 P H F

m

The words for 1 in French, Spanish, and Italian all begin with w«. For illustrative
purposes, we might compare languages by looking at the first letters of the numbers.

—

—_ - WA DA ADR WD

E
N
Da
Du
G
Fr

—

N WABLAEAEAOANWNVMOO
—_—

A S A BV I SRV SN
—

D) O ek e e N O

N W WWO

-0 WY o

= ONWVwWO

Sp
1
P
H
F

We call the words for the same number in two different languages concordant if they
have the same first letter and discordant if they do not. From Table 12.2, the table of
concordances (frequencies of matching first initials) for the numbers 1-101is given in
Table 12.3: We see that English and Norwegian have the same first letter for 8 of the
10 word pairs. The remaining frequencies were calculated in the same manner.

The results in Table 12.3 confirm our initial visual impression of Table 12.2. That
is, English, Norwegian, Danish, Dutch, and German seem to form a group. .French,
Spanish, Italian, and Polish might be grouped together, whereas Hungarian and
Finnish appear to stand alone. ™




Agglomerative hierarchical methods are proceeded by a series
of successive mergers. Initially regard each object as a cluster,
the most similar objects are first grouped, continually merge

until all of the subgroups are fused into a single cluster.

Divisive hierarchical methods work in the opposite direction.
They are proceeded by a series of successive divisions. An
initial single group of all objects is divided into 2 subgr
such that the objects in one subgroup are “fqr f,-o
Ther Con’rlnually divide until edch obj



and V
a V) and the

1 T

s e

4. Repeat Steps 2 and 3 a total of N-T times. (Al ‘objects will be in a single cluster after j>

the algorithm terminates.) Record the identity of clusters that are merged and the levels
(distances or similarities) at which the mergers take place.




From the figure, we see that single linkage

results when groups are fused according to
Chiié distance the distance between their nearest

members.

d24

Complete linkage occurs when groups are
fused according to the distance between
their farthest members.

For average linkage, groups are fused
according to the average distance
between pairs of members in the
respective sets.

Figure 12.2 Intercluster distance (dissimilari
linkage, and (c) average linkage.

ty) for (a) single linkage, (b) complete




d(UV)W = min{dyw, dyw}

Example 12.3 (Clustering using single linkage) To illustrate the single linkage dzsy = min{dgsy, dig} = min{7,9} =7
algorithm, we consider the hypothetical distances between pairs of five objects as || d(135)4 = min{d(35)4, d14} = min{8,6} =6

follows:
(135) 2 4 (135) (24)

(125) 2 ) (135) [ 0 }
® o (24) ©®) 0

- 6

Single

e nearest neighbor distances are linkage

dendrogram

d(35)1 = min {d31,d51} = min {3, 11} =3
d(35)2 = min {d32,d52} = min {7, 10} =17
d qEY). o= min {d34,d54} = min {9, 8} =8

Distance

Now repeat until all of the
smallest pairs have been

distance

matrix
clustered.




\) COMPLETE LINKAGE (most distant) dyyyw =
max{dyw, dyw}

Example 12.5 (Clustering using complete linkage) Let us return to the distance
matrix introduced in Example 12.3:

1
0
9
3
6
11

= max{dsz;,ds;} = max{3,11} =11
= max {ds, ds;} = 10

Modified

distance
matrix

Continue to the
next merger

d(24)(35) = max {d2(35),d4(35)} = max{lO, 9} =10

d(24)1 = max {d21’ d41} =9

Complete
linkage
dendrogram
for distances
between five
objects.

Distance

1 2 4 3 3

Objects




one en en een eins un uno uno jeden egy yksi

zwei deux dos due dwa kaksi

drei trois tres tre trzy harom kolme trei

four fire fire vier vier quatre cuatro quattro cztery negy nelja patru

funf cinq cinco cinque piec ot viisi cinci

sechs seis sei szesc hat kuusi sase

sieben siete siedem het seitseman

eight atte otte acht acht huit ocho otto osiem nyolc kahdeksan opt
nine ni ni negen neun neuf nueve nove dziewiec kilenc yhdeksan noua

ten ti ti tien zehn dix diez dieci dziesiec tiz kymmenen zece

Measure the similarities of 12 languages






Matrix of distances:
\] Subtract the concordances from the perfect agreement rigure ot 10

Fr Sp I P HFi Ro

O

[
WCWOWOWOWWWOWWmOoO

1

=
0
2
2
7
6
6
6
6
7
9
9
6

AW~ u= O
MWD wmun v O O

0
1 9 0
fitl<-hclust(dist,method="single")
plot(fitl)
fit2<-hclust(dist,method="complete™)
plot(fit2)
fit3<-hclust(dist,method="average")
plot(fit3)

0
0
9
5
S
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Cluster Dendrogram Cluster Dendrogram Cluster Dendrogram

dist dist dist
helust (*, "single") helust (*, "complete”) hclust (*, "average")

From these we can see that French, Italian, Spanish, and Romanian are very similar,
and that Finish and Hungarian are both quite different from other languages.

Average linkage leads to a dendrogram that is much like the single linkage
configuration.



w)ard’s Hierarchical Clustering Method

Use Ward’s method to cluster the four items whose measurements on a single variable X
are given in the following table.

Measurements
Item

1
2
3
4

(a) Initially, each item is a cluster and we have the clusters

{1} {2} {3} {4}
Show that ESS = 0, as it must.
(b) If we join clusters {1} and {2}, the new cluster {12} has

3 (x- %=

and the ESS associated with the grouping {12}, {3}, {4} is ESS= .5
+ 0 4+ 0 = .5. The increase in ESS (loss of information) from the first step to the
current step in .5 — 0 = .5. Complete the following table by determining the in-
crease in ESS for all the possibilities at step 2.

ESS, = 2-152+(1-15?%=35

N
ESS = ’g (x; ~ X)'(x; — %)

(a) ESS; = (2 -
ESS, = (8 -

(b) At step 2

0 ESS, =

Clusters

u—n2-om$r-@ @2_0um

Increase

in ESS

(c) At step 3

{3}
{2}
{2}
{23}
{24}

{4}
{4}
{3}
{4}
{3}

{2} {34}

9D
4.5
18.0
8.0
24.5
4.5

Increase
in ESS
5.0

8.7

Ciusters
{34}
{4}

| Increase
Clusters in ESS

TN
b
(23} 4{
{24} 3
22 (34}

(c) Complete the last two algamation steps, and construct the dendrogram showing the
values of ESS at which the mergers take place.

{ 12}
{123}

Finally all four together have
ESS=(2-4)2+(1-4)’2+(6-4)>+(8—-4)?=









