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Abstract. The pinhole camera is the ubiquitous model for well-focused
imaging systems. This model describes how points in three dimensions are
projected onto the camera’s two-dimension image plane which represents a
digital image, for instance. The geometric features of this projection have
classically been described in terms of projective geometry. This framework
is physically unrealistic in the sense that one ignores directional informa-
tion, i.e. it is not assumed that the scene being imagined lies in front
of the camera. It has been noted in the computer vision literature that
this is a problem and in fact results in greater sensitivity to measurement
error. We take this directional information into account and develop the
notion of oriented projective shape, and oriented projective shape space.
Simulation studies show that the resulting extrinsic statistical techniques
for image data have greater statistical power than comparable statisti-
cal techniques which ignore directional information. Here, 3D oriented
projective shape analysis is made possible using 3D reconstructions from
digital camera images.
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1 Introduction

Digital image data plays a vital role in engineering, the mathematical sciences, the
biomedical sciences, and many other scientific and technological fields. Much of this
image data comes from a security or cell-phone camera. For these types of image
acquisition systems, knowledge about camera calibration and scene structure is of-
ten unknown. In this uncalibrated camera setting one cannot correct an image for
perspective effects associated with the placement of the imaging system relative to
the object of the interest. These perspective effects are however relatively easy to
describe once one adopts the pinhole camera model. This camera model is known to
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be a good geometric approximation to many well-focused imaging systems (see Ma,
et al. (2006), Hartley and Zisserman (2004)[2]).

Under the ideal pinhole camera the perspective projection of a point p, with Eu-
clidean coordinates (X,Y, Z) (regarded as affine coordinate of the 3D projective point
[X : Y : Z : 1]) onto the image plane, has Euclidean coordinates (x, y) (affine coor-
dinates of the 2D projective point [x : y : 1]) as defined by the following relation in
affine coordinates:

λ

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




X
Y
Z
1

 .

where λ = Z > 0 is the unknown for an uncalibrated camera, and f is the focal
distance.

At this point in the modeling process, it is very common to treat the homogenous
coordinates as being unique up to a non-zero scalars when for practical purposes,
they are really unique up to positive scalars. Under the classical assumption homoge-
nous coordinates become points in projective spaces, albeit of different dimensions,
and perspective projection model may now be cast in terms of an elegant projective
geometric framework. We briefly review relevant concepts from projective geometry.

In projective geometry two non-zero vectors x and y in (m+ 1)-dimensional nu-
merical space Rm+1 are equivalent if they differ by a non-zero scalar multiple. The
equivalence class of x ∈ Rm+1 \ {0} is labeled [x]. The set of all such equivalence
classes is the projective space P (Rm+1) associated with Rm+1

P (Rm+1) = {[x]; x ∈ Rm+1 \ {0}}.

and is often denoted as RPm. The projective space RPm topologically anm-dimensional
unit sphere Sm with the antipodal points identified, and can be represented as a dis-
joint union of ordinary and ideal projective points;

RPm =




x1

...
xm

1

 ∈ RPm

︸ ︷︷ ︸
ordinary points

⋃



x1

...
xm

0

 ∈ RPm

︸ ︷︷ ︸
ideal points

In this framework for instance, a vanishing point in a two-dimensional image corre-
sponds to an (ideal) point in RP 2. The downside to introducing projective geometry
is that points behind the image plane are all virtual images of points in front of the
camera. If we instead treat the homogenous coordinates as being unique up to a
positive scalar, then we in effect assume that the scene being imagined lies in front
of the camera and the perspective projection model is now described using oriented
projective geometry; references include Stolfi(1991)[12].

In oriented projective geometry two non-zero vectors x and y in Rm+1 are equiva-
lent if they differ by a positive scalar multiple. The equivalence class of x ∈ Rm+1\{0}
is labeled

−→
[x]. The set of all such equivalence classes is the oriented projective space
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−→
P (Rm+1) associated with Rm+1

−→
P (Rm+1) = {

−→
[x]; x ∈ Rm+1 \ {0}}

and is also identified with Sm , set of vectors of Euclidean norm one in Rm+1, via−→
[x] → 1

∥x∥x. One option for the choice of a distance between two points
−→
[x] and

−→
[y] in

−→
P (Rm+1) is the chord distance d0(

1
∥x∥x,

1
∥y∥y), where d0 is the Euclidean distance in

Rm+1.

2 Oriented projective shape space

We first review concepts of projective transformations and projective shape space, as
a starting point for our discussion of oriented projective transformations and oriented
projective shape space. Below is a summary pertinent results (see Patrangenaru
and Mardia (2005)[5], Munk et al(2008)[6], Paige et al(2005)[7], Qiu et al(2019)[11],
Patrangenaru and Ellingson(2015)[9]).

A k-ad is an ordered list of k labeled points in Rm; it can be also regarded as a
k-ad in RPm, via the standard affine embedding of Rm in RPm given by

x = (x1, . . . , xm) → [x1 : · · · : xm : 1] = [(x1 . . . xm1)T ].

Note that interchangeably, as deemed necessary, in this paper a point in Rd is
regarded as column or row vector. Two k-ads of points in Rm have the same projective
shape if they differ by a projective transformation of Rm. Recall that

Definition 2.1. A projective transformation g = gP of RPm is the projective map
associated with a nonsingular matrix P ∈ GL(m+ 1,R) and its action on RPm

gP ([x]) = g([x1 : · · · : xm+1]) = [P (x1 · · ·xm+1)
T ]

The projective transformations of RPm form a group, denoted by PGL(m).

Definition 2.2. An ordered list of m + 2 labeled points in RPm is said to form a
projective frame (basis) if they span RPm. An ordered list of k ≥ m + 2 labeled
projective points in RPm are said to be in general position if the first m+ 2 of these
points form a projective frame. G (k,m) is the space of all k-ads in general position
in RPm.

Definition 2.3. The projective shape of a k-ad X = ([x1], . . . , [xk]) ∈ G (k,m) is the
orbit of X under the action α of PGL(m) on G (k,m), given by

α(gP , X) = (gP ([x1]), . . . , gP ([xk])).

Definition 2.4. The projective shape space, PΣk
m, is the space of projective shapes

of all k-ads in RPm in general position

PΣk
m = G (k,m) /PGL(m).
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Theorem 2.1. PΣk
m is a manifold, which is homeomorphic with

RPm × RPm × · · · × RPm︸ ︷︷ ︸
q copies

= (RPm)q

where
q = k −m− 2.

We now extend the above concepts to the oriented projective setting, as first
described in Stolfi(1991)[12], and further discussed in Lazebnik(2002)[3], and define
novel concepts of oriented projective shape and oriented projective shape space.

Definition 2.5. An oriented projective transformation g = gP of
−→
P (Rm+1) ≡ Sm is

a transformation associated with matrix P ∈ GL+(m+ 1,R), and is given by

g(
−−−−−−−−−−−→
[(x1 · · ·xm+1)

T ]) =
−−−−−−−−−−−−→
[P (x1 · · ·xm+1)

T ]

where GL+(m+1,R) is the group of (m+ 1)× (m+ 1) matrices with positive deter-
minant. OPGL(m) is the group of oriented projective transformations.

Definition 2.6. An ordered list of m+2 labeled points in
−→
P (Rm+1) ≡ Sm is said to

form an oriented projective frame (basis) if they span
−→
P (Rm+1), and the last point

in the configuration is in the positive hull of the first m+ 1 points. An oriented k-ad
is a k-ad such that the first m + 2 of its points form an oriented projective frame.

The set of all oriented k-ads in
−→
P (Rm+1) is denoted by G+ (k,m).

Definition 2.7. The oriented projective shape
−→
[X] of an oriented k-adX = (

−−→
[x1], . . . ,

−−→
[xk]) ∈

G+ (k,m) is the orbit of that k- ad under the action of OPGL(m) given by

gP (
−−→
[x1], . . . ,

−−→
[xk]) = (

−−−→
[Px1], . . . ,

−−−→
[Pxk]), P ∈ GL+(m+ 1,R).

The oriented projective shape space, OPΣk
m, is the space of oriented projective

shapes of oriented k-ads

OPΣk
m = G+ (k,m) /OPGL(m)

where G+ (k,m) is the space of all oriented k-ads.

3 Oriented Projective Coordinates

We first review projective coordinates as a starting point for introducing oriented
projective coordinates. Recalling from Mardia and Patrangenaru(2005)[5],

Definition 3.1. The standard projective basis is

([e1], . . . , [em+1], [e1 + · · ·+ em+1])

where
(e1, . . . , em+1)

is the standard basis Rm+1
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Theorem 3.1. Given two projective bases

(p1, . . . , pm+2)

and
(q1, . . . , qm+2)

there is a unique projective transformation g defined for a P ∈ GL(m+ 1,R) as

g([x1 : · · · : xm+1]) = [P (x1, · · · , xm+1)
T ]

such that
g (pj) = [Ppj ] = qj

for j = 1, . . . ,m+ 2

Corollary 3.2. Given a k-ad in general position (p1, . . . , pk), pj = [xj ], j = 1, . . . , q.
Since (p1, . . . , pm+2) is a projective basis, there exists a unique projective transforma-
tion g defined for a P ∈ GL(m+ 1,R) so that

g (pj) = [Pxj ] = [ej ]

for j = 1, . . . ,m+ 1 and

g (pm+2) = [Pxm+2] = [e1 + · · ·+ em+1]

Now we are ready to define the projective coordinates of a k-ad as first described
in Patrangenaru (1999)[8].

Definition 3.2. Suppose that k-ad X = (p1, . . . , pk), pj = [xj ], j = 1, . . . , q is in
general position, and let the projective transformation g = gP ∈ PGL(m), P ∈
GL(m+ 1,R) be such that

g (pj) = [Pxj ] = [ej ]

for j = 1, . . . ,m+ 1 and

g (pm+2) = [Pxm+2] = [e1 + · · ·+ em+1]

will necessarily map the remaining k−m− 2 landmarks into a point in (RPm)
k−m−2

and these points are the projective coordinates of the k-ad X.

Now we consider analogous definitions and results for the oriented projective shape
space case.

Definition 3.3. The standard oriented projective basis is

(
−→
[e1], . . . ,

−−−−→
[em+1],

−−−−−−−−−−−−−→
[e1 + · · ·+ em+1])

where
(e1, . . . , em+1)

is the standard basis Rm+1
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Note that this basis has a positive orientation relative to Rm+1 since the determi-
nant of the matrix (e1, . . . , em+1) is positive. In the approach of Stolfi(1991)[12]

(e1, . . . , em+1)

is thought of as a simplex and is termed the canonical m dimensional simplex, the
oriented projective point −−−−−−−−−−−−→

[e1 + · · ·+ em+1]

is known as the unit point and the signature of

(
−→
[e1], . . . ,

−−−−→
[em+1],

−−−−−−−−−−−−→
[e1 + · · ·+ em+1])

is denoted as
+ + · · ·+

since the unit point is generated from

−→
[e1], . . . ,

−−−−→
[em+1]

as a linear combination with all positive coefficients so that the unit point is in the
interior of the simplex

(
−→
[e1], . . . ,

−−−−→
[em+1]).

Following definition 7, we have

Proposition 3.3. An oriented projective basis of
−→
P Rm+1 is an ordered set of labeled

points (p1, . . . , pm+2), pj =
−→
[xj ], j = 1, . . . ,m+ 2, with (x1, . . . , xm+1) being positively

oriented, and xm+2 = α1x1 + · · ·+ α1xm+1, αj > 0,∀j = 1, . . . ,m+ 1.

Theorem 3.4. (Stolfi(1991)[12], Chapter 12) Given two oriented projective bases

(p1, . . . , pm+2)

and
(q1, . . . , qm+2)

there is a unique oriented projective transformation g = gP ∈ OPGL(m), P ∈
GL+(m+ 1,R) such that

g (pj) =
−−−→
[Ppj ] = qj

for j = 1, . . . ,m+ 2

Corollary 3.5. Given an oriented k-ad (p1, ..., pk), pj =
−→
[xj ], j = 1. . . . , k, there

exists a unique oriented projective transformation g = gP ∈ OPGL(m) defined for a
P ∈ GL+(m+ 1,R) so that

g (pj) =
−−−→
[Pxj ] =

−→
[ej ]

for j = 1, . . . ,m+ 1 and

g (pm+2) =
−−−−−→
[Ppm+2] =

−−−−−−−−−−−−→
[e1 + · · ·+ em+1]
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The oriented projective coordinates of an oriented k-ad X = (p1, ..., pk), pj =
−→
[xj ], j = 1. . . . , k are now defined in the following manner: let g be the oriented pro-
jective transformation, given in Corollary 3.5, then (g(pm+3), . . . , g(pk) ∈ (Sm)k−m−2

are the oriented projective coordinates of the oriented k-ad (p1, ..., pk).

Corollary 3.6. OPΣk
m is a manifold which is homeomorphic with (Sm)q where, as

before,
q = k −m− 2.

Consider, for example, the k-ad

X =

 69 591 626 69 344
53 33 402 430 322
1 1 1 1 1


and let

U = [x1, x2, x3] =

 69 591 626
53 33 402
1 1 1



x4 = U

 1
1
1

 = [x1, x2, x3]

 1
1
1


=

 69 591 626
53 33 402
1 1 1

 1
1
1

 =

 1286
488
3


So that now our augmented k-ad is

X̃ =

 69 591 626 1286 69 344
53 33 402 488 430 322
1 1 1 3 1 1


and

U−1X̃ =

 69 591 626
53 33 402
1 1 1

−1  69 591 626 1286 69 344
53 33 402 488 430 322
1 1 1 3 1 1


=

 1 0 0 1 1.068 3 0.523 79
0 1 0 1 −1.086 2 −0.278 60
0 0 1 1 1.018 0 0.754 81


so that our oriented projective coordinate is 1.0683

−1.0862
1.0180

 ,

 0.52379
−0.27860
0.75481


Normalizing these vectors to have unit length yields the spherical representation of
oriented projective coordinate as 0.58301

−0.59282
0.55557

 ,

 0.545 58
−0.290 19
0.786 21


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4 Power study

The Face Research Lab in the Institute of Neuroscience and Psychology at the Univer-
sity of Glasgow has published composite portraits of men and women from around to
world which approximate the “average face” of each gender by country. The average
white American male and female faces are shown below using the 9 facial landmarks,
as measured in freeware program ImageJ, which we consider in our power study.
For details on how to obtain an average face digital image using means of landmark
configurations see Patrangenaru and Patrangenaru(2004)[10].

Figure 1: Average of white American male face images (left) and of white American
female face images(right), based on oriented shape means of landmark configurations

In our power study we simulated from two populations generated by random per-
spective transformations of the randomly perturbed landmarks. For each simulation
run these perturbations were bivariate normal realizations with zero mean and a co-
variance matrix taken to be the 2 by 2 sample covariance of the landmark points. For
each set of gender landmarks total of 4 bivariate normal realizations were used. This
is because we assume certain symmetries in these perturbations in that landmarks
1 and 4 had the same perturbation, landmarks 2 and 3 had the same perturbation,
landmarks 5, 6 and 7 have their own perturbation, and landmarks 8 and 9 have their
own landmark.

Chapter 11 of Corke (2011)[1] describes the geometric model of perspective image
creation for the pinhole camera model in detail and provides MATLAB routines for
generating perspective images which we used in our simulations. In reference to
figure 11.5 of Corke(2011)[1] and the ensuing discussion, numerical experimentation
indicated that using a focal value of 0.008 meters and a 1024×1024 pixel array of 10−6

meter square pixels worked well. The original landmarks coordinates for each scene
were translated so that their centroid or geometric center coincided with the principal
point or centroid of the pixel array. For each scene we randomly and uniformly varied
the mathematical camera pose angles in horizontal (x) and vertical (y) directions,
rotations about the optical axis (z), and randomly translated the camera model in
R3 based upon the values of three independent standard normal realizations. This
resulted in more than 90% of the randomly generated landmark points all of whom
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were located in front of the camera, with a value of z > 0. If any of the nine simulated
landmark points ended up behind the camera then all nine landmark points were
discarded and another draw was obtained.

In our Monte Carlo study we had 1,000 runs in which independent samples of size
100 for each set of gender landmarks was performed. Extrinsic tests of differences
where used for each of the 1,000 Monte Carlo runs and each of the two methods
considered. Given the large sizes used in each run, asymptotic cutoff values were
used. The Monte Carlo estimates of power were as follows:

Projective 0.279
Oriented Projective 0.887

Here oriented projective statistic was computed using Bhattacharya’s two-sample test
method for extrinsic means; see section 6.3 of Patrangenaru and Ellingson (2015).

5 3D current and future work

Statistical analyses in oriented projective shape space are likely to have more statisti-
cal power than analogous procedures in developed in classical projective shape space.
One possible application would involve tests for differences in three-dimensional sur-
faces like those shown below.

Figure 2: Retrieving and comparing 3D face oriented projective shapes from digital
camera images

This is part could have particularly important application, say, in the navigation
systems for self-driving cars particularly when they are operating under less than ideal
illumination conditions.
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For future work, we plan to build textured surfaces of living individuals, using the
same RGB correlation method used for statues surface reconstruction.

5.1 Simultaneous confidence regions for the projective shape
change between two FSU presidents statues

The figures 3 are simultaneous confidence regions for the mean 3D projective shape
face configurations change for the two FSU presidents, presented above. The data
consists 30 photos taken from one president and 18 photos taken from the other
president, as described in figure 2. In this case, a matched pairs test cannot be
used since the number of samples from one president differs from that of the other
president. We utilize the landmarks 1,4,5,6,8 to construct the projective frame and
compute sample means based on the landmarks 2,3,7,9 in figure 2 to get the confidence
region for the projective shape change. For these four landmarks, the the point (0,0,0)
is not in the 12 confidence intervals of the associate affine coordinates of the projective
shape change. Therefore there is a significant mean projective shape change.

It would be interesting to define 3D oriented projective shape change and to plot
simultaneous confidence regions for the mean 3D oriented projective shape change in
future. Comparing the computational times for similar tasks in the projective shape
analysis vs oriented projective shape analysis are also deferred to future work.

Figure 3: Simultaneous confidence regions for the marginal axial components of mean
projective shape changes in affine coordinates for the configuration selected for the
two presidents.
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