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DASS-1

I Spaces of phylogenetic trees were first examples of sample
spaces that are not manifolds were given in Billera et al.(2001).
My original contact with DASS was during a 2002 IMS meeting in
Banff, when S. Holmes presented some of her results on
phylogenetic trees.

I During a 2007 visit in Göttingen, I learned from Stephan
Huckemann that Fréchet sample means on mean of a cone
might have a different behavior, if the population mean is its
vertex, when compared with the case, when they don’t.

I Another note was a in an 2010 e-mail conversation with J. S.
Marron, organizer of the Analysis of Object Data (AOD) program
at SAMSI in 2010 - 2011, where he made the point there is an
interesting behavior of Fréchet means on sample spaces that
have singular points, such as spaces of trees, compared with the
case of sample means on manifolds.

I Thirdly, during a crucial discussion with Ezra Miller at SAMSI,
2010, I realized that AOD = DASS



DASS-2

I A working group of Data Analysis on Sample Spaces with a
Manifold Stratification, was created at SAMSI in 2010, and an
early version of the CLT for Fréchet sample means on Spiders
was proved by Hotz, Huckemann et al.(2010), including a
stickiness property

I The very inclusive subject of DASS, advanced during the MBI
Workshop of Statistics, Geometry, and Combinatorics on
Stratified Spaces Arising from Biological Problems, and in a
Meeting of the ISNPS (Chalkidiki, 2012), and picked up some
steam in the Statistics and Geometry in Bioimaging: Manifolds
and Stratified Spaces conference, in Denmark, in 2013.

I some real data driven computation of means on phylogenetic
trees are due Sqwerer et al (2014), Patrangenaru et al (2014)

I additional TDA work in DASS is due to Marron et al.(2014)



So ... What is a Stratified Space?

I A stratified space ( space with a manifold stratification (
Hasler Whitney ) ) is a metric space M that admits a filtration
∅ = F−1 ⊆ F0 ⊆ F1 . . . ⊆ Fn ⊂ · · · = M = ∪∞i=0Fi , by closed
subspaces, such that for each i = 1, . . . ,Fi\Fi−1 is empty or is an
i-dimensional manifold, called the i − th stratum.

I The regular part of M is the highest dimensional stratum. At
each regular point the stratified space has a tangent space

I The dimension of the stratified space is m if M = Fm 6= Fm−1,
otherwise dimM =∞. All the strata of dimension lower than m
are singular: at each of their points, the stratified space does not
have a tangent point.

Figure: A 2D stratified space - T4, space of trees with four leafs



Manifolds and Sample Spaces with a Manifold
Structure

Manifold stratified space is defined in terms of a manifold stratification.
I A manifold is a metric space M is locally homeomorphic to an Euclidean

space, via homemorphisms forming an atlas; the transition map k ◦ k−1

of two such homeomorphisms h, k is smooth.
I At each of its points, a manifold has a tangent space, made of vectors

tangent at that point, to differentiable paths on the manifold.
I Manifolds arise as non-Euclidean sample spaces: spaces of axes in 3D,

spaces of planar direct similarity shapes of k-ads ( Kendall shape
spaces), spaces of projective shapes of spatial configurations of k-ads
in general position, etc

I All the sample spaces listed above are compact.

Figure: A tangent space at a point on a 2D manifold



Why Should Statisticians Care about Stratified
Spaces?

Data does not live on numerical spaces. The sample spaces have
in fact a complicated nonlinear structure. Simple example include

I tree structured data including phylogenetic trees
I astronomy and cosmology data: galaxies, stars and planetary

orbits data
I Spatial Statistics : temperatures, snow and other functions

measured across the planet
I vector fields of wind velocities on the Earth surface
I Geology : paleomagnetic data, plate tectonics, volcanos
I morphometric data
I protein and DNA structures
I medical imaging outputs, including : angiography data ( such as

brain vessels structure), CT, MRI
I satellite or aerial imaging
I digital camera imaging data
I internet data, may be (Show me the data)



Means on Manifolds

I Cartan (1929) considers for the first time the barycenter of a
finite set of points on a Hadamard manifold. Such a barycenter
will be called a Cartan (sample) mean. Note that the notion of
manifold was introduced much later by de Rham (1946).

I Fréchet (1946) extends the notion of Cartan sample mean
(without referring to Cartan, most likely being unaware of
Cartan’s work in Riemannian Geometry) to what today is called
Fréchet mean set of a random object on a complete separable
metric space. This is a more general setting than manifolds .

I Fréchet (1946) suggests to analyze, for example the shape of a
(random) contour or the shape of eggs in an basket.

I Kobayashi and Nomizu (1969) mention Cartan’s work on
barycenters on CAT(0) spaces

I Karcher (1977) considered barycenters on finite sets of points on
arbitrary manifolds



Data Analysis on Manifolds - History Note - I
I Ziezold reconsiders Fréchet mean sets of random points X on

complete separable metric spaces (M, ρ), as minimizers of
x → E(ρ2(x ,X ), proving their consistency

I Fisher et al.(1996) estimate the mean axis for an arbitrary
distribution on RPd .

I Patrangenaru (1998) defines extrinsic and intrinsic means on
manifolds and derives a CLT for extrinsic means on manifolds,
using a Fisher et al.(1996) type of sample estimator

I Hendricks and Landsman (1996, 1998) derive a CLT for extrinsic
means on manifolds, using a different estimator, whose
covariance matrix obtained from the Weingarten map
Weingarten , and derive the first two sample test for extrinsic
means on manifolds

I Bhattacharya and Patrangenaru (2003, 2005) derive a general
asymptotic theory for Fréchet means on manifolds, as well as its
nonparametric bootstrap corollaries.

I Bandulasiri et al.(2009), Patrangenaru et. al(2010), Crane and
Patrangenaru (2011) use nonparametric bootstrap methods in
3D shape analysis.



Data Analysis on Manifolds - History Note - II

I Bhattacharya et. al. (2012) show that extrinsic data analysis on
manifolds is faster than intrinsic analysis, thus rending intrinsic
data analysis in general obsolete.

I Bhattacharya and Bhattacharya (2012) extend the work of
Hendricks and Landsman (1998) to two sample tests for means
extrinsic means of independent populations on arbitrary
manifolds

I Osborne et al (2013) used Cholesky decompositions to derive to
sample tests for mean DTI outputs on the symmetric space of
positive semidefinite 3× 3 matrices.

I Guo at al. (2014) considered empirical methods for
nonparametric Bootstrap test for equality of extrinsic Mean
reflection shapes with application to biological shape change

I Patrangenaru et al (2014) use nonparametric bootstrap to derive
two sample tests for mean change on Lie groups, and apply their
results to 3D projective shape analysis



Example of Stratified Space of Phylogenetic Trees
with p Leaves

A phylogenetic tree with p leaves is an equivalence class based on a certain
equivalence, of a DNA-based connected directed graph of species with no
loops, having an unobserved root (common ancestor) and p observed leaves
(current observed species of a certain family of living creatures).



Example of a Phylogenetic Tree Building



Tree Spaces

Figure: Tree spaces T3, T4, T5.

I A tree with p leaves is a connected, simply connected graph , with a
distinguished vertex, labeled o, called the root, and p vertices of degree
1, called leaves, that are labeled from 1 to p. In addition, we assume
that with all interior edges have positive lengths. (An edge of a p-tree is
called interior if it is not connected to a leaf.) See Billera et. al.(2001).

I Now consider a tree T, with interior edges e1, . . . , er of lengths l1, . . . , lr
respectively. If T is binary, then r = p − 2, otherwise r < n − 2. The
vector (l1, . . . , lr )T specifies a point in the positive open orthant (0,∞)r .



Eukaryotes mean tree example

A first data driven example of data driven intrinsic mean computation
on the space of phylogenetic trees T4 is was given in Ellingson et.
al.(2014).

Figure: DNA sequences Eukaryotes species

Figure: Yule speciation trees for Perkinsus DNA data



Acrosterigma Magnum Clamshell

I One of the largest species from the Cardiidae bivalve family
I Large numbers washed ashore St George Island during

Deepwater Horizon oil spill in May 2010
I Bilateral Symmetry implies that a shape data analysis can be

performed based on any one of the two shells found
I one such live specimen is pictured in the figure below



Compare Mean Reflection Shape Change

I Two samples: large shells and small shells
I Select landmarks consistently throughout the two samples
I Obtain Euclidean 3D similarity reconstructions using
I Compute Schoenberg (extrinsic) sample means
I Compare Schoenberg (extrinsic) population means
I The methodology is nonparametric nonpivotal bootstrap
I For details on the 3D Scoenberg means computations see

Bandulasiri et al.(2009).



Two pictures of shell with landmarks



Reconstruction obtained from landmark
correspondences



Schoenberg sample mean computations for the 3D
data

Similarly, Ĉsmall = 1
7

∑
j={10,11,12,14,17,18,21} UT

j Uj .

The eigenvalues of Ĉsmall satisfie λp > λp+1. So the Schoenberg
mean reflection shape µ̂E exists and µE = [u]R where uT can be taken
as

V = (v1v2v3)

whose columns are orthogonal eigenvectors of Ĉsmall corresponding
to the largest eigenvalues λ1 ≥ λ2 ≥ λ3 of Ĉsmall , with

vT
j vj = λj +

1
3

(λ4 + . . .+ λk ), ∀j = 1,2,3.

The Schoenberg sample mean [ξ̂large]R reflection shape of the small
group is

[ξ̂small ]R = {Aûsmall : A ∈ O(3)}



Schoenberg sample mean computations for the 3D
data-2

Schoenberg sample mean reflection shapes of large and small shells

Figure: Icons of extrinsic mean shape for large shells sample(red) and small
shells sample(blue)



Schoenberg sample mean computations for the 3D
data

Icons of bootstrap distributions of Schoenberg sample mean
reflection shapes of large and small shells

Figure: Distributions of bootstrapped extrinsic mean shape for large shells
sample(red) and small shells sample(blue).



3D Mean Projective Shape Change Analysis for Lily
Data

I In this example we will test the existence of mean 3D projective
shape change to differentiate between two Lily flowers.

I The methodology was developed in Patrangenaru et al. (2014)
I The MATLAB codes were borrowed from that work
I Flowers belonging to the genus Lilum have three petals and

three petal-like sepals. It may be difficult to distinguish the lily
petals from the sepals, all six are referred to as tepals.

I We will use pairs of pictures of two flowers for our study. We will
recover the 3D projective shape of a spatial k -ad (in our case
k = 13) from the pairs of images, which will allow us to test for
mean 3D projective shape change detection. See Patrangenaru
et.al. (2010).

I We used digital images of two flowers: 11 pairs of pictures for
one lily and 8 pairs of pictures for the other one.

I We slected 13 landmarks anatomic landmaks, 5 of which will be
used to construct a projective frame.



First Sample Data

We collected a set of n1 = 11 pairs of pictures for the first flower and
it is show in the figures below;

Figure: Lily flower 1



Second Sample Data

For the second flower we have a set of n2 = 8 pairs of pictures;

Figure: Lily flower 2



Landmarks-I
Throughout the first sample (size n1 = 11) we kept the same labeling
of landmarks and the same configuration. The tepals landmarks were
labeled 1 through 6;

Figure: Landmark Placements for Tepals



Landmarks-I

The six stamens ( male part of the flower) ,were labeled 7 through 12
starting with the stamen that is closely related to tepal 1 and
continuing in the same fashion. The landmarks were placed at the tip
of the anther of each of the six stamens and in the center of the
stigma for the carpel (the female part).

Figure: Landmark Placements for Stamens and Carpel



Landmarks-II
For the second sets of data, we kept a constant configuration for all
the landmarks, using the same orientation for all n2 = 8 pairs, as
illustrated below

Figure: Landmark Placements for Tepals



Landmarks-II

Landmarks for Stamens and Carpel :

Figure: Landmark Placements for Stamens and Carpel of second flower



Projective Frame and Projective Coordinates

The data analysis was carried out on the space of 3D projective
shape of k -ads (k = 13), a sample space homeomorphic to (RP3)8.
Here RP3 is the 3D real projective space.

I For all of our 3D reconstructed configurations, the first 5 ( our 13
) landmarks were selected as our projective frame.

I To each projective point we associated its projective coordinate
with respect to the projective frame (see Mardia and
Patrangenaru (2005),Patrangenaru et al.(2010, 2014))

I The projective shape of the 3D k -ad, is then determined by the 8
projective coordinates of the remaining landmarks of the
reconstructed configuration.



Two sample test for change in the VW means
I The Veronese-Whitney (VW) mean is the extrinsic mean

associated with the VW embedding (see Patrangenaru et
al.(2010, 2014) for details).

I We tested for the VW mean change, since (RP3)8 has a Lie
group structure (Crane and Patrangenaru(2010)).

I Two types of VW mean changes were considered: one for cross
validation, and the other for comparing the WV mean shapes of
the two flowers.

I Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for
there mean change are

H0 : µ−1
1,13 � µ2,13 = 18

I Let ϕ be the Log chart on this Lie group, ϕ(18) = 08, compute
the bootstrap distribution.

D∗ = ϕ(X̄−1
11,j13

⊗ X̄8,j13 )

I Construct the 100(1− α)% nonparametric bootstrap confidence
region by D∗,

I For simplicity one may use simultaneous confidence intervals.
I We expect to fail to reject the null, for both tests.



Results for the Two sample Test

In this slide and the next two, we have eight figures showing the
various simultaneaous nonparametric bootstrap confidence regions
for all remaining 8 reconstructed landmarks.

Figure: Eight bootstrap projective shape marginals for lily data

Conclusion: there is significant mean VW projective shape change
between the two flowers



Simultaneaous Nonparametric Bootstrap Confidence
intervals

Highlighted in blue are the intervals not containg 0 ∈ R.

simultaneous confidence intervals for Lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (0.61,1.64) (0.32,0.56) (−0.43,0.82) (0.05,0.88)
y (−0.91,0.10) (−0.20,0.35) (−0.25,0.58) (−0.36,0.46)
z (−1.5,1.2) (0.18,0.64) (0.29,0.83) (0.21,0.88)

Simultaneous confidence intervals for Lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (0.060,0.82) (0.50,0.84) (0.42,0.65) (0.47,0.87)
y (−0.34,0.16) (−0.05,0.25) (−0.08,0.19) (−0.07,0.45)
z (0.20,0.80) (0.059,0.62) (0.076,0.57) (−0.14,0.50)



Data for Cross-Validation

I For this particular portion we used a sample consisting of the
same flower. We do so in part to validate the choice of the
landmarks and to make sure the code can recognize the same
flower displayed through many pictures.

I This sample was divided into two portion of n1 = 5 data points
and n2 = 6 data points.



Data for Cross-Validation

The sample is shown below;

Figure: Lily same Flower sample 1



Data for Cross-Validation

Figure: Lily same Flower sample 2



Confidence Region for Cross validation

Figure: Eight bootstrap projective shape marginals for cross validation

One can show that, as expected, there is no mean VW projective
shape change, based on the two samples with sample sizes
respectively n1 = 5 and n2 = 6.



Fréchet Means and Fréchet Antimeans
Oller and Corcuera (1995) found for the von Mises distribution on Sd

having two mean values, while in fact there is only one intrinsic (and
extrinsic) mean.
Note that Sd us a compact manifold. One can easily see that the
mean value in the sense of Oller and Corcuera (1995), is actually a
maximizer of the expected mean chord square distance on Sd .
Note that the computations considered in the two last examples
above were also on compact manifolds. We are led to consider the
following
DEFINITION (Patrangenaru and Ellingson (2015), Patrangenaru et.
al.(2016)). Consider a probability measure Q on a compact Hausdorf
metric space (M, ρ), for which the Fréchet function is bounded. The
set of all points of maximum (minimum ) of this function is called the
Fréchet antimean set (Fréchet mean set) . In case the Fréchet
antimean set only point only, that point is the Fréchet antimean
(Fréchet mean). Given X1, . . . ,Xn i.i.d.r.v.’s from Q, their Cartan
sample antimean set (Cartan sample mean set ) are the Cartan
antimean set (Cartan mean set) of the empirical distribution
Q̂n = 1

n

∑n
i=1 δXi .



Extrinsic Mean and Extrinsic Sample Mean

Definition (Extrinsic Mean)
The set of all minimizers of this function is called the extrinsic mean
set. If Fréchet function has unique minimizer, then this point is the
extrinsic mean, and is labeled µj (Q), or simply µE , when j is known.

µE = arg min
p

F (p) = arg min
p

E
[
ρ2(p, x)

]
= arg min

p
E‖j(x)− j(p)‖2

Definition (Extrinsic Sample Mean)
Given X1, . . . ,Xn i.i.d.r.v.’s from Q, if Fréchet function has unique
minimizer, then this point is the extrinsic sample mean and its
notation is X̄E .

µ̂E = arg min
p

F (p) = arg min
p

E
[
ρ2(p,X )

]
= arg min

p

1
n

n∑
i=1

‖j(xi )−j(p)‖2



Extrinsic AntiMean and Extrinsic Sample AntiMean

Definition (Extrinsic AntiMean)
The set of all maximizers of this function is called the extrinsic
antimean set. If Fréchet function has unique maximizer, then this
point is the extrinsic antimean, and is labeled αµj (Q), or simply αµE ,
when j is known.

αµE = arg max
p

F (p) = arg max
p

E
[
ρ2(p, x)

]
= arg max

p
E‖j(x)− j(p)‖2

Definition (Extrinsic Sample Mean)
Given X1, . . . ,Xn i.i.d.r.v.’s from Q, if Fréchet function has unique
maximizer, then this point is the extrinsic sample antimean and its
notation is aX̄E .

µ̂E = arg max
p

F (p) = arg max
p

E
[
ρ2(p,X )

]
= arg max

p

1
n

n∑
i=1

‖j(xi )−j(p)‖2



Extrinsic Antimeans

Definition
The set of maximizers of the Fréchet function, is called the extrinsic
antimean set. In case the extrinsic antimean set has one point only,
that point is called extrinsic antimean of X , and is labeled αµj,E (Q),
or simply αµE , when j is known.



Extrinsic Antimeans

Theorem
Let Q = PX be a probability measure associated with the random
object X on a compact metric space (M, ρ). So we have
F (p) = E(ρ2(p,X )) is finite on M.

(a) Then, given any ε > 0, there exist a P-null set N and n(ω) <∞
∀ω ∈ Nc such that the Fréchet (sample) antimean set of
Q̂n = Q̂n,ω is contained in the ε-neighborhood of the Fréchet
antimean set of Q for all n ≥ n(ω).

(b) If the Fréchet antimean of Q exists then every measurable choice
from the Fréchet (sample) antimean set of Q̂n is a strongly
consistent estimator of the Fréchet antimean of Q.



Non-focal condition

Definition (αj-nonfocal)

(a) A point y ∈ RN for which there is a unique point p ∈M satisfying
the equality,

sup
x∈M

‖y − j(x)‖0 = d0(y , j(p)) (1)

is called αj-nonfocal. A point which is not αj-nonfocal is said to be
αj-focal.

(b) If y is an αj-nonfocal point, its projection on j(M) is the unique
point z = PF ,j (y) ∈ j(M) with
sup
x∈M

‖y − j(x)‖0 = d0(y , j(p)).



Non-focal condition

Definition
A probability distribution Q onM is said to be αj-nonfocal if the mean
µ of j(Q) is αj-nonfocal.

Theorem
Let µ be the mean vector of j(Q) in RN . Then the following hold true:

(i) The extrinsic antimean set is the set of all points x ∈M such
that supp∈M ‖µ− j(p)‖0 = d0(µ, j(x)).

(ii) If αµj,E (Q) exists, then µ is αj -nonfocal and
αµj,E (Q) = j−1(PF ,j (µ)).



Extrinsic Sample Antimean

Definition
Let x1, ...., xn be random observations from a distribution Q on a
compact metric space (M, ρ), then their extrinsic sample antimean
set, is the set of maximizers of the Fréchet function F̂n associated
with the empirical distribution Q̂n = 1

n

∑n
i=1 δxi , which is given by

F̂n(p) =
1
n

n∑
i=1

‖j(xi )− j(p)‖2
0 (2)

If Q̂n has an extrinsic antimean, its extrinsic antimean is called
extrinsic sample antimean, and it is denoted aX̄j,E .



Extrinsic Sample Antimean

Theorem
Assume Q is an αj -nonfocal probability measure on the manifoldM
and X = {X1, ....,Xn} are i.i.d r.o.’s from Q. Then,
(a) If j(X ) is an αj -nonfocal, then the extrinsic sample antimean is

given by aX̄j,E = j−1(PF ,j (j(X ))).

(b) The set (αF )c of αj -nonfocal points is a generic subset of RN ,
and if αµj,E (Q) exists, then the extrinsic sample antimean aX̄j,E is
a consistent estimator of αµj,E (Q).



Central Limit Theorem for Sample Antimean

Theorem
n1/2(PF ,j (j(X ))− PF ,j (µ)) converges weakly to Nk (0k , αΣµ), where
j(X ) = 1

n

∑n
i=1 j(Xi ) and

αΣµ = [
d∑

a=1

dµPF ,j (eb) · ea(PF ,j (µ))ea(PF ,j (µ))]b=1,...,k

×Σ[
d∑

a=1

dµPF ,j (eb) · ea(PF ,j (µ))ea(PF ,j (µ))]Tb=1,...,k

(3)

Here Σ is the covariance matrix of j(X1) w.r.t the canonical basis
e1,e2, . . . ,ek .
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