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Abstract In this article, we extend mean 3D projective shape change in matched
pairs to independent samples. We provide a brief introduction of projective shapes
of spatial configurations obtained from their digital camera images, building on
previous results of Crane and Patrangenaru (J Multivar Anal 102:225–237, 2011).
The manifold of projective shapes of k-ads in 3D containing a projective frame at five
given landmark indices has a natural Lie group structure, which is inherited from the
quaternion multiplication. Here, given the small sample size, one estimates the mean
3D projective shape change in two populations, based on independent random sam-
ples of possibly different sizes using Efron’s nonparametric bootstrap. This method-
ology is applied in three relevant applications of analysis of 3D scenes from digital
images: visual quality control, face recognition, and scene recognition.
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1 Introduction

Without exception, seers including insects, cephalopods, and vertebrates have bila-
teral vision. Light from the surrounding environment is gathered and projected onto
a pair retinas, where it is translated into electrical impulses and sent to brain regions
for further processing. The mechanism of 3D vision within the bounded domain of a
brain or of a machine is very complex and, until recently, was poorly understood. On
the Geometry and Optics level, progress was made due to key results in Computer
Vision by Longuet-Higgins (1981), Faugeras (1992), Hartley et al. (1992) and others.
These results, and human visual perception led (Patrangenaru et al. 2012) to conclude
that all we see are 3D projective shapes.

On the heels of these results, the main objective of this paper is to develop
two sample tests statistics for extrinsic 3D mean projective shapes, based on data
extracted from pairs of digital camera images. Our methodology is nonparametric
bootstrap. Combining bilateral images into a 3D object is a crucial step. Therefore
in Section 2 we recall the result on the 3D projective scene reconstruction of a
finite spatial configuration from pairs of its uncalibrated digital camera images. Here
we also introduce P�k

m, k > m + 1, the projective shape space of k-ads including a
projective frame at fixed given indices, and using projective coordinates, we identify
this space with a direct product of real projective spaces in dimension m. Analysis of
projective shapes regarded as objects, is given as an example of the general Fréchet
principle of studying nonlinear data on metric spaces. The distance used between
projective shapes is the chord distance via the Veronese–Whitney (VW) embedding
of (RPm)k−m−2 in a product of spaces of symmetric matrices. The VW mean of a ran-
dom projective shape is its Fréchet mean relative to this extrinsic distance. Asymptotic
test statistics for the equality of the extrinsic means of independent random objects
(r. o.’s) on a manifold embedded in the Euclidean space on manifolds were first
considered in Hendriks and Landsman (1998) and more recently in Bhattacharya
(2008) and Bhattacharya and Bhattacharya (2012). In an attempt of addressing the
case of matched pairs, Bhattacharya (2008) also derived a large sample test statistic
under the more general assumption of correlated pairs of r. o.’s when the sample
sizes are equal. In Section 3, we derive an asymptotic test statistics for the average
change between two r.o.’s on Lie groups, thus extending hypothesis testing problems
for the mean difference of two random vectors to the case of extrinsic means of
independent r.o.’s on a Lie group. A two sample hypothesis testing problem for
extrinsic means on the embedded manifold M that admits a simply transitive Lie
group of isometries G, can be formulated, and in Theorem 3.1 a large sample test
statistic is given for this problem. Nonparametric bootstrap confidence regions are
also given in this section. In Section 4 we show that the space of 3D projective shapes
of configurations that include a projective frame has a Lie group structure (see also
Crane and Patrangenaru 2011), thus allowing to define and test for VW-mean projec-
tive shape change. Here we combine previous nonparametric inference methodology
for projective shapes with those in Section 3. As a result, nonparametric bootstrap
confidence regions for the change in VW 3D means are derived in Corollary 4.1
and Remark 4.2. Section 5 is dedicated to three applications of the nonparametric
bootstrap methodology for two samples tests for mean VW 3D projective shapes
developed in the previous section. Here we give one example of two sample tests for
3D mean projective shape of polyhedral scenes extracted from digital images, where
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the null hypothesis is rejected. The 3D projective shape data is extracted from pairs of
digital images by combining algorithms described in Ma et al. (2006) and Mardia and
Patrangenaru (2005). The first application can be used in visual quality control (see
Bhattacharya et al. 2012), the second one in landmark based face recognition, and
the third one in scene recognition (a bust of Epicurus). The bust data, which is new,
is given for convenience in the Appendix.

2 3D Projective Shapes from Uncalibrated Camera Images and Projective
Shape Manifolds

In this section we recall basic facts about the geometry of 3D vision from bilateral
views. For more details, see Hartley and Zisserman (2004), Patrangenaru et al. (2010)
and the references therein. A point in the outer space and its central projection
via the camera pinhole, determine a unique line in space, leading to the definition
of the real projective plane RP2 as space of all straight lines going through the
origin of R

3. Consider a real vector space V, and let 0V be the zero of this
vector space. Two vectors x, y ∈ V\{0V} are equivalent if they differ by a scalar
multiple. The equivalence class of x ∈ V\{0V} is labeled [x], and the set of all such
equivalence classes is the projective space P(V) associated with V, P(V) = {[x], x ∈
V\{0V}}. The real projective space in m dimensions, RPm is the projective space
P(Rm+1). Another notation for a projective point p = [x] ∈ RPm, equivalence class
of x = (x1, . . . , xm+1) ∈ R

m+1, is p = [x1 : x2 : · · · : xm+1] featuring the homogeneous
coordinates of p. The af f ine coordinates relative to the last homogeneous coordinate
of the projective point p = [x1 : x2 : · · · : xm+1] are

ϕm+1(p) = (a1, a2, . . . , am), a j = x j

xm+1 ,∀ j = 1, . . . , m. (2.1)

The spherical representation of a point [x] ∈ RPm, is z = x
‖x‖ , and is uniquely deter-

mined up to its sign. A projective transformation is a map π : P(V) → P(V), given
by π([x]) = [Ax], A ∈ GL(V).

The problem of the reconstruction of a configuration of points in 3D from two
ideal uncalibrated camera images with unknown camera parameters, is equivalent to
the following: given two camera images RP2

1, RP2
2 of unknown relative position and

internal camera parameters and two matching sets of labeled points {pa,1, . . . , pa,k} ⊂
RP2

a, a = 1, 2, find all the sets of points in space p1, . . . , pk in such that there exist
two positions of the planes RP2

1, RP2
2 and internal parameters of the two cameras

ca, a = 1, 2 with the property that the ca-image of pj is pa, j,∀a = 1, 2, j = 1, . . . , k.

In absence of registration errors, in the uncalibrated case, the solution to the
reconstruction problem is unique up to a projective transformation (see Faugeras
1992 and Hartley et al. 1992).

Definition 2.1 Two sets of labeled points {pa,1, . . . , pa,k} ⊂ RPm
a , a = 1, 2, have the

same projective shape if there is a projective transformation β : RPm → RPm, such
that β(p1, j) = p2, j, ∀ j = 1, . . . k.
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The reconstruction algorithm was therefore reformulated as follows by
Sughatadasa (2006) and by Patrangenaru et al. (2010):

Theorem 2.1 In absence of occlusions, any two 3D reconstructed conf igurations
R,R′ obtained from a pair of 2D matched conf igurations in uncalibrated cameras
images of a 3D conf iguration C, have the same projective shape.

Note that the solution of the reconstruction problem, from a pair of 2D images
depends on a landmark correspondence.

2.1 Projective Frames and Projective Shapes

A projective frame in RPm is an ordered m + 2 tuple of points π = (p1, . . . , pm+2),

any m + 1 of which are in general position. The standard projective frame π0 is
the projective frame associated with the standard vector basis e = (e1, . . . , em+1),

of R
m+1, in this case π0 = (p0,1, . . . , p0,m+2), where p0, j = [e j], ∀ j = 1, . . . , m + 1,

and p0,m+2 = [e1 + · · · + em+1]. Note that since the action of a projective transfor-
mation is uniquely determined by its action on a projective frame (see Mardia
and Patrangenaru 2005), given a point p ∈ RPm, its projective coordinates pπ w.r.t.
a projective frame π = (p1, . . . , pm+2) are defined as the image of p under the
projective transformation that takes π to π0 (for an example of projective shape data
registration in 2D given in Buibas et al. (2012) see Fig. 1). The projective coordinates
of a point on the projective space w.r.t. a projective frame, as well as their equations,
in terms of the coordinates of the projective frame are given in Patrangenaru (2001),
Mardia and Patrangenaru (2005), Munk et al. (2008), or Patrangenaru et al. (2010).

2.2 Manifolds of Projective Shapes in General Position and their Veronese–Whitney
Embeddings

Two ordered sets of points in RPm ( k-ads ) (p1, . . . pk), (p′
1, . . . p′

k) have the same
projective shape if there is a projective transformation π of RPm, with π(pi) =
p′

i, ∀i = 1, . . . , k. Having the same projective shape is an equivalence relationship
on the set of k-ads, and the equivalence class pσ(p) = pσ((p1, . . . pk)) of a k-ad

Fig. 1 Original 2D scene and
its registered projective
coordinates in their spherical
representation
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(p1, . . . pk) is called projective shape. Early statistical studies of projective shape
including Mardia et al. (1996), Goodall and Mardia (1999), based on parametric
models for projective invariants, were soon replaced by nonparametric data analysis
on manifolds using a general method of projective frames by Patrangenaru (1999).
There is a particular interest in projective shapes of k-ads in general position in RPm.

These are projective shapes of k-ads that contain a projective frame, and in particular
for such k-ads k ≥ m + 2. In general, if a configuration of ( possibly infinitely many
) points contains a projective frame, then the projective shape of that configuration,
is determined by the projective coordinates of the other points of this configuration
w.r.t. that projective frame. Let P�k

m be the set of projective shapes of generic k-
ads in RPm, such that the first m + 2 points in the k-tuple form a projective frame.
P�k

m is a manifold diffeomorphic with (RPm)k−m−2, leading to a multivariate axial
data analysis (Mardia and Patrangenaru 2005). Assume q = k − m − 2. Patrangenaru
(2001), Mardia et al. (2003), Mardia and Patrangenaru (2005) and others considered
the diagonal equivariant Veronese–Whitney (VW) embedding of P�k

m given by

jk : P�k
m = (RPm)q → (Sym(m + 1))q (2.2)

defined by

jk([x1], ..., [xq]) = ( j([x1]), ..., j([xq])), (2.3)

where xs ∈ R
m+1, xT

s xs = 1,∀s = 1, ..., q and j is the Veronese–Whitney embedding

j([x]) = xxT , xT x = 1. (2.4)

2.3 Fréchet’s Program for a Statistical Analysis of Random Objects

In general, the question of studying random elements (often called random objects
(r.o.’s)) other than random vectors was first raised by Fréchet (1948). As examples,
Fréchet suggested to analyze the shape of a random contour, or the shape of an
egg selected at random from an wire egg basket. Fréchet’s approach to Analysis of
Object Data (AoOD) consists in identifying an object with a point in a metric space
(M, d). Next, given a r.o. X on M, he defined what we call today the Fréchet function
on M, given by Fd(p) = E(d2(X, p)). A minimizer of Fd above is a Fréchet mean,
and the minimum value of Fd is the Fréchet total variance. In this paper we follow
Fréchet’s approach for inference on the projective shape manifold M = P�k

m with
the distance d(pσ(p), pσ(p′)) = ‖ jk(pσ(p)) − jk(pσ(p′))‖, where P�k

m is identified
with (RPm)q and jk is the VW embedding in Eq. 2.4. In this case the Fréchet mean
of a random projective shape will be simply called mean projective shape. An early
study of the asymptotic distribution of the total sample Fréchet variance associated
with this distance d is due to Patrangenaru (1999, 2001).

3 Two-Sample Tests for Extrinsic Means on a Lie Group

Recall that a group (G,	) that has in addition an m dimensional manifold struc-
ture, such that the group multiplication 	 : G × G → G, and the inversion I : G →
G, I(g) = g−1 are differentiable maps between manifolds, is called a Lie group. For
a comprehensive introduction to manifolds and Lie groups, including tangent spaces
and tangent maps associated to dif ferentiable maps between manifolds, embedding,
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the tangent and normal component of a vector, relative to the tangent space at the point
of a manifold, vector f ield on a manifold, Lie algebra of a Lie group, exponential
map in a Lie group, etc see Spivak (1979). Recall that a local frame f ield on an m
dimensional manifold G, is an ordered set of local vector fields (e1, . . . , em) on an
open subset U, ei : U → TU, such that for any point u ∈ U, (e1(u), . . . , em(u)) is a
basis of TuU = TuG.

3.1 Test for Mean Change in Matched Pairs on a Lie Group

For a large sample of observations from a matched pair (X, Y) of random vectors
in R

m, one may estimate the difference vector D = Y − X to eliminate much of the
influence of extraneous unit to unit variation (Johnson and Wichern 2007, p. 274),
without increasing the dimensionality. Crane and Patrangenaru (2011) extended
this technique to paired r.o.’s on an embedded Lie group that is not necessarily
commutative. Assuming X and Y are paired r.o.’s on a Lie group (G,	). The change
from X to Y was defined to be r. o. C =: X−1 	 Y. A test for no mean change from
X to Y is one for the null hypothesis

H0 : μJ = 1G, (3.1)

where 1G is the identity of G and μJ is the extrinsic mean of C with respect to an
embedding J : G → R

N, which is given by

μJ = J−1(P(μ)). (3.2)

Here μ is the mean of J(C) and P(μ) is its projection on J(G), the point on J(G) that
is closest to μ, which is assumed to be unique (C is J-nonfocal). We assume J(C)

has finite moments of sufficiently high order. If C1, . . . , Cn are i.i.d.r.o. s on G, their
extrinsic sample mean is the extrinsic mean of their empirical distribution.

Assume (e1, . . . , em) is a local orthonormal frame field defined on an open
neighborhood J(U) of P(μ) in J(G) T.he coordinates of the tangential component
tan(v) of v ∈ R

N w.r.t. the basis ea(P(μ)) ∈ TP(μ) J(G), a = 1, . . . , m are given by

tan(v) = (e1(P(μ))Tv . . . em(P(μ))Tv)T . (3.3)

We set fa(u) = (du J)−1(ea(J(u))),∀u ∈ U. Then the random vector
(dμJ )

−1(tan(P(J(X)) − Pj(μ))) has the following covariance matrix w.r.t. the
basis f1(μJ), · · · , fm(μJ):

�J = (ea(P(μ))T�μeb (P(μ)))1≤a,b≤m

=
[∑

dμ P(eb ) · ea(P(μ))
]

a=1,...,m
�

[∑
dμ P(eb ) · ea(P(μ))

]T

a=1,...,m
, (3.4)

where � is the covariance of J(C) in R
N .

Definition 3.1 The distribution Q (of X1) is J-nonfocal, if P(μ) is well defined.
The matrix �J given by Eq. 3.4 is the extrinsic covariance matrix of the J-nonfocal
distribution Q w.r.t. the basis f1(μJ), . . . , fm(μJ).
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Given the i.i.d.’s matched pairs (Xi, Yi) ∈ G2, i = 1, . . . , n, and the correspond-
ing changes Ci = X−1

i Yi ∈ G, i = 1, . . . , n, it is known (see Bhattacharya and
Patrangenaru 2005) that

√
ntan(J(C̄) − J(μJ))

L−→ Nm(0, �J), (3.5)

where �J is the extrinsic covariance matrix of C, and tan(v) is the tangential
component in Tμa,J J(G) of a vector v ∈ R

N with respect to the decomposition R
N =

Tμa,J J(G) ⊕ (Tμa,J J(G))⊥.

Let SJ,n be the sample extrinsic covariance matrix, obtained from the i.i.d.r.o.’s
{Xr}r=1,...,n from the unknown distribution Q. At this point we recall from
Bhattacharya and Patrangenaru (2005) the steps that one takes to obtain a boot-
strapped statistic from a pivotal statistic. If {X∗

r }r=1,...,n is a random sample from
the empirical Q̂n, conditionally given {Xr}r=1,...,n, then the studentized vector valued
statistic

V(X, Q) = n
1
2 S

− 1
2

J,n tan(P(J(X)) − P(μ)) (3.6)

leads to the bootstrapped statistic

V∗(X∗, Q̂n) = n
1
2 S∗

J,n
− 1

2 tanP(J(X)))(PJ(J(X∗)) − PJ(J(X))). (3.7)

Here S∗
J,n is obtained from SJ,n substituting X∗

1 , ....., X∗
n for X1, ...., Xn, and

T(X∗, Q̂n) is obtained from T(X, Q) by substituting X∗
1 , ....., X∗

n for X1, ...., Xn,
J(X) for μ and S∗

J,n for SJ,n.

Corollary 3.1 A (1 − α)100 % bootstrap conf idence region for μJ is C∗
n,α :=

J−1(U∗
n,α) with U∗

n,α given by

U∗
n,α = {μ ∈ J(G) : n‖S

− 1
2

J,n tan(P(J(X)) − P(μ))‖2 ≤ c∗1−α}, (3.8)

where c∗1−α is the upper 100(1 − α) % point of the values

n‖S∗
J,n

− 1
2 tanP(J(X))(P(J(X∗)) − P(J(X)))‖2 (3.9)

among the bootstrap resamples.

3.2 Two-Sample Tests for Extrinsic Means on Manifolds and Simply Transitive Lie
Group Actions

Recall that given an embedding J : M → R
N , we consider the chord distance on

M, given by d(x1, x2) = d0(J(x1), J(x2)), where d0 is the Euclidean distance in R
N.

If Xaja : ja = 1, . . . , na, a = 1, 2 are i.i.d.r.o.’s drawn from distributions Qa, a = 1, 2
on a M, if we denote by μa the mean of the induced probability Qa ◦ J−1 and by �a

its covariance matrix (a = 1, 2), then the extrinsic mean of Qa is μa,J = J−1(P(μa)),
assuming Qa is J-nonfocal, and the extrinsic sample mean is X̄a,J = J−1(P(Ȳa)).

Here, again, P is the projection from R
N to J(M), and we write Yaja = J(Xaja) ja =

1, . . . , na, a = 1, 2 then Ȳa, a = 1, 2 is the corresponding sample mean. Assuming
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finite second moments of Ya1, a = 1, 2, which is automatic if M is compact, from
Eq. 3.5 we have

√
natan(J(X̄a,J) − J(μa,J))

L−→ Nm(0, �a,J), a = 1, 2, (3.10)

where �a,J is the extrinsic covariance matrix of Qa, and tan(v) is the tangential
component in Tμa,J J(M) of a vector v ∈ R

N with respect to the decomposition
R

N = Tμa,J J(M) ⊕ (Tμa,J J(M))⊥.

Definition 3.2 An action of a Lie group G on a manifold M, is a differentiable
function α : G ×M → M, such that

α(1G, x) = x,∀x ∈ M,

α(g, α(h, x)) = α(g 	 h, x),∀g ∈ G, ∀h ∈ G, ∀x ∈ M. (3.11)

M has a simply transitive Lie group of isometries G, if there is a Lie group action
α : G ×M → M by isometries with the property that given x ∈ M, for any object
y ∈ M, there is a unique g ∈ G such that α(g, x) = y.

A two sample hypothesis testing problem for extrinsic means on the embedded
manifold M that admits a simply transitive Lie group of isometries G, can be
formulated as follows:

H0 : μ2,J = α(δ, μ1,J)

versus

H1 : μ2,J �= α(δ, μ1,J). (3.12)

Given a fixed object x ∈ M, the mapping αx : G → M, αx(g) = α(g, x) is bijective,
therefore the hypothesis problem (Eq. 3.12) is equivalent to the following hypothesis
testing problem for a given element δ on the Lie group G :

(1) H0 : (αμ1,J )−1(μ2,J) = δ,

versus

H1 : (αμ1,J )−1(μ2,J) �= δ (3.13)

Let H : M2 → G, defined by

H(x1, x2) = (αx1)−1(x2). (3.14)

Theorem 3.1 Assume Xa, ja , ja = 1, . . . , na are identically independent distributed ran-
dom objects (i.i.d.r.o.’s) from the independent probability measures Qa, a = 1, 2 with
f inite extrinsic moments of order s, s ≤ 4 on the m dimensional manifold M on which
the Lie group G acts simply transitively. Let n = n1 + n2 and assume lim

n→∞
n1
n → π ∈

(0, 1). Let ϕ : g → G and Lδ be respectively, a chart with ϕ(1G) = 0g, and the left
translation by δ ∈ G. Then under H0,

(i.) The sequence of random vectors
√

n(ϕ ◦ L−1
δ (H(X̄n1,J, X̄n2,J))) (3.15)
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converges weakly to Nm(0m, �J), for some covariance matrix �J that depends
linearly on the extrinsic covariance matrices �a,J of Qa, a = 1, 2.

(ii.) If (i.) holds and �J is positive def inite, then the sequence

n(ϕ ◦ L−1
δ (H(X̄n1,J, X̄n2,J)))

T�−1
J (ϕ ◦ L−1

δ (H(X̄n1,J, X̄n2,J))) (3.16)

converges weakly to χ2
m distribution.

The following result is a direct consequence of Cramer’s delta method, applied to
functions between embedded manifolds.

Lemma 3.1 Assume F : M1 → M2 is a dif ferentiable function between manifolds.
For a = 1, 2, assume dim Ma = ma, and Ja : Ma → R

Na is an embedding. Let Xn be
a sequence of r.o.’s on M1 such that

√
ntanJ1(ν)(J1(Xn) − J1(ν))

L−→ Nm1(0, �), (3.17)

then
√

ntanJ2(F(ν))(J2(F(Xn)) − J2(F(ν)))
L−→ Nm2(0, dν F�(dν F)T), (3.18)

where dν F : TνM1 → TF(ν)M2 is the dif ferential of F at μ.

Proof of Theorem 3.1 By the inverse function theorem, the mapping H : M×
M → G is continuous. Given that, according to Bhattacharya and Patrangenaru
(2003), for a = 1, 2, the extrinsic sample mean X̄na,J is a consistent estimator of
μa,J , for a = 1, 2, by the continuity theorem (Billingsley 1995, p. 334) a consistent
estimator for (αμ1,J )−1(μ2,J) is H(X̄n1,J, X̄n2,J). From Bhattacharya and Patrangenaru
(2005), for a = 1, 2,

√
natanμa,J (J(X̄na,J) − J(μa,J))

L−→ Nm(0m, �a,J), (3.19)

and, since na
n → π, it follows that

√
ntan(μ1,J ,μ2,J)(J2((X̄n1,J, X̄n2,J)) − J2((μ1,J, μ2,J)))

L−→ N2m(02m, �), (3.20)

where

� =
⎛
⎜⎝

1
π

�1,J 0

0
1

1 − π
�2,J

⎞
⎟⎠ . (3.21)

We apply Lemma 3.1 to the function F : M2 → G, given by F = Lδ−1 ◦ H, and
select a convenient chart ϕ, and obtain Eq. 3.15. Theorem 3.1(ii.) is an immediate
consequence of part (i.) plus a weak continuity argument (Billingsley 1995, p. 334)

��

Corollary 3.2 For a = 1, 2, assume xa, ja , ja = 1, . . . , na, are random samples from a
J-nonfocal distribution Q on the m dimensional embedded manifold M on which the
Lie group G acts simply transitively.
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Let n = n1 + n2, and assume lim
n→∞

n1
n → π ∈ (0, 1). Assume �J is positive def inite

and �̂J is a consistent estimator for �J . The asymptotic p-value for the hypothesis
testing problem in Eq. 3.12 is given by p = P(T ≥ t2

δ ) where

t2
δ = n((ϕ ◦ L−1

δ (H(x̄n1,J, x̄n2,J)))
T(�̂J)

−1(ϕ ◦ L−1
δ (H(x̄n1,J, x̄n2,J))), (3.22)

and T has a χ2
m distribution.

If the distributions are unknown and the samples are small, an alternative ap-
proach is to use Efron’s nonparametric bootstrap (Efron 1982). If max(n1, n2) ≤
m
2 , the sample mean �̂J in Corollary 3.2 does not have an inverse, and pivotal
nonparametric bootstrap methodology can not be applied. In this case one may use a
nonpivotal bootstrap methodology for the two sample problem H0 (see Bhattacharya
and Ghosh 1978, Hall and Hart 1990, Fisher et al. 1996 or Hall 1997).

Theorem 3.2 Under the hypotheses of Theorem 3.1i., assume in addition, that for a =
1, 2 the support of the distribution of Xa,1 and the extrinsic mean μa,J are included in
the domain of the chart ϕ and ϕ(Xa,1) has an absolutely continuous component and
f inite moments of suf f iciently high order. Then the joint distribution of

V = √
n(ϕ ◦ L−1

δ (H(X̄n1,J, X̄n2,J)))

can be approximated by the bootstrap joint distribution of

V∗ = √
n(ϕ ◦ L−1

δ (H(X̄∗
n1,J, X̄∗

n2,J)) (3.23)

with an error Op(n− 1
2 ), where, for a = 1, 2, X̄∗

na,J are the extrinsic means of the
bootstrap resamples X∗

a, ja , ja = 1, . . . , na, given Xa, ja , ja = 1, . . . , na.

Remark 3.1 Beran and Fisher (1998) were the first to use group actions in hypothesis
testing problems, a technique later used in Mardia and Patrangenaru (2005). The
drawback in Mardia and Patrangenaru (2005) was that their analysis led to an in-
crease in dimensionality, forcing the extrinsic covariance matrices to be degenerated.
In this paper we consider in particular the case when M itself has a Lie group
structure 	, and the group action is left translations: α : M2 → M, α(g, x) = g 	 x.

Given two objects x, y the change from x to y is c = x−1 	 y. Given two random
objects X, Y, from Theorem 3.1 we may estimate the change from the extrinsic mean
of X to the extrinsic mean of Y. Note that this is the mean change defined in Crane
and Patrangenaru (2011) only if X, Y are matched pairs and on a commutative group
(G,	).

Remark 3.2 The methodology of simply transitive groups on manifolds can be also
adapted to hypothesis testing for two intrinsic means on manifolds, as shown in
Osborne et al. (2013)

4 Two Sample Test for VW means of 3D Projective Shapes

In this section we apply the results in Section 3 along with previous results in
projective shape analysis, to two sample tests on the projective shape space P�k

3 .
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4.1 A Lie Group Structure on the Manifold of 3D Projective Shapes
of Configurations Containing a Projective Frame

Note that, as shown by Crane and Patrangenaru (2011), unlike in other dimensions,
the projective shape manifold P�k

3 , k ≥ 5, has a Lie group structure, derived from
the quaternion multiplication. Recall that if a real number x is identified with
(0, 0, 0, x) ∈ R

4, and if we label the quadruples (1, 0, 0, 0), (0, 1, 0, 0), respectively
(0, 0, 1, 0) by

−→
i ,

−→
j , respectively

−→
k , then the multiplication table given by

	 −→
i

−→
j

−→
k−→

i −1
−→
k −−→

j−→
j −−→

k −1
−→
i−→

k
−→

j −−→
i −1

where a 	 b product of a on the first column with b on the top row, is listed on the
row of a and column of b , extends by linearity to a multiplication 	 of R

4. Note
that (R4,+,	) has a structure of a noncommutative field, the field of quaternions,
usually labeled by H. Note that if h, h′ ∈ H, then ‖h 	 h′‖ = ‖h‖‖h′‖, and the three
dimensional sphere inherits a group structure, the group of quaternions of norm one.

Moreover, since RP3 is the quotient S3/x ∼ −x

[x] 	 [y] =: [x 	 y], (4.1)

is a well defined Lie group operator on RP3, called the group of p-quaternions. Note
that if h = t + x

−→
i + y

−→
j + z

−→
k , its conjugate is h̄ = t − x

−→
i − y

−→
j − z

−→
k , and the

inverse of h is given by

h−1 = ‖h‖−2h̄, (4.2)

As shown in Section 2, as manifold, P�k
3 is diffeomorphic with (RP3)q, where q =

k − 5. With this identification, P�k
3 ∼ (RP3)q inherits a Lie group structure from the

group structure p-quaternions RP3 with the multiplication given by

([h1], . . . , [hq]) 	 ([h′
1], . . . , [h′

q]) := ([h1] 	 [h′
1], . . . , [hq] 	 [h′

q])
= ([h1 	 h′

1], . . . , [hq 	 h′
q]). (4.3)

The identity element is given by 1(RP3)q = ([0 : 0 : 0 : 1], . . . , [0 : 0 : 0 : 1]), and
given a point h = ([h1], . . . , [hq]) ∈ (RP3)q, from Eq. 4.2, its inverse is h−1 = h =
([h̄1], . . . , [h̄q]).

4.2 Nonparametric Bootstrap Tests for VW mean 3D Projective Shape Change

A random projective shape Y of a k-ad in general position including a projective
frame in RPm has a multivariate axial representation

(Y1, . . . , Yq), Ys = [Xs], (Xs)T Xs = 1,∀s = 1, . . . , q = k − m − 2. (4.4)
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Y is VW-nonfocal if ∀s = 1, . . . , q, the largest eigenvalue of E(Xs(Xs)T) is simple,
and, in this case the VW (extrinsic) mean projective shape μ jk of (Y1, . . . , Yq) is
given by

μ jk = ([γ1(m + 1)], ..., [γq(m + 1)]), (4.5)

where λs(a) and γs(a), a = 1, . . . , m + 1 are the eigenvalues in increasing order and
the corresponding unit eigenvectors of E(Xs(Xs)T).

If Yr, r = 1, . . . , n are i.i.d.’s from a VW-nonfocal probability distribution on
(RPm)q, given in their multi-axial representation (Eq. 4.4):

Yr = ([X1
r ], . . . , [Xq

r ]), (Xs
r )

T Xs
r = 1; s = 1, . . . , q, (4.6)

their sample VW-mean can be obtained as follows (see Patrangenaru et al. 2010). Let
Js be the r.o. given by

Js = n−1�n
r=1 Xs

r (Xs
r )

T , s = 1, . . . , q, (4.7)

where ds(a) and gs(a) are the eigenvalues in increasing order and corresponding unit
eigenvectors of Js, a = 1, . . . , m + 1, then the sample mean VW projective shape, in
the multi-axial representation (Eq. 4.4), is given by

Y jk,n = ([g1(m + 1)], . . . , [gq(m + 1)]). (4.8)

Mardia and Patrangenaru (2005) showed that if Y1, . . . , Yn are i.i.d.r.o.’s from a
VW-nonfocal probability measure on (RPm)q and μ jk in Eq. 4.5 is the extrinsic
mean of Y1, then the entries of the extrinsic sample covariance matrix Gn = S jk,n

defined in Eq. 4.9, with the pairs of indices (s, a), s = 1, . . . , q; a = 1, . . . , m, in their
lexicographic order, with respect to a convenient orthonormal basis, are given by

Gn(s,a),(t,b) = n−1(ds(m + 1) − ds(a))−1(dt(m + 1) − dt(b))−1 ·

·
n∑

r=1

(gs(a)T Xs
r )(gt(b)T Xt

r)(gs(m + 1)T Xs
r )(gt(m + 1)T Xt

r). (4.9)

Moreover, the asymptotic distribution of Y jk,n can be obtained as follows. We
consider the matrices Ds given by

Ds = (gs(1) . . . gs(m)) ∈ M(m + 1, m;R), s = 1, . . . , q. (4.10)

If μ = ([γ1], . . . , [γq]), where γs ∈ R
m+1, γ T

s γs = 1, for s = 1, . . . , q, we define the
statistic T:

T(Y jk,n;μ) = n(γ T
1 D1, . . . , γ

T
q Dq)G−1

n (γ T
1 D1, . . . , γ

T
q Dq)

T . (4.11)

If Y1 is a jk-nonfocal population on (RPm)q, and has a nonzero absolutely continuous
component, and with � jk > 0, then the bootstrap distribution of the square norm of
the vector valued statistic in Eq. 3.7 is given in our case by

T(Y
∗
jk;Y jk) = n(g1(m + 1)T D∗

1, . . . , gq(m + 1)T D∗
q) G∗−1

n

× (g1(m + 1)T D∗
1, . . . , gq(m + 1)T D∗

q)
T . (4.12)
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and from Section 3, this statistic is useful in estimation and testing for mean VW-
projective shapes. For example for the one sample hypothesis testing problem for
mean projective shapes:

H0 : μ jk = μ0 vs. H1 : μ jk �= μ0. (4.13)

if � jk,n is singular and all the marginal axial distributions have positive definite extrin-
sic covariance matrices, one may use simultaneous confidence ellipsoids to estimate
μ jk . Assume (Yr)r=1,...,n are i.i.d.r.o.’s from a jk−nonfocal probability distribution on
(RPm)q. For each s = 1, . . . , q let �s be the extrinsic covariance matrix of Ys

1, and let
Y

s
j,n and Gs,n be the extrinsic sample mean and the extrinsic sample covariance matrix

of the s-th marginal axial and the probability measure of Ys
1 has a nonzero absolutely

continuous component w.r.t. the volume measure on RPm. For s = 1, . . . , q and for
[γs] ∈ RPm, γ T

s γs = 1, we consider the statistics:

Ts = Ts(Y
s
j,n, [γs]) = nγ T

s DsG−1
s,n DT

s γs (4.14)

and the corresponding bootstrap distributions

T∗
s = Ts(Y

s∗
j , Y

s
j,n) = ngs(m + 1)T D∗

s G∗
s,n

−1 D∗T
s gs(m + 1). (4.15)

Patrangenaru et al. (2010) showed that Ts has asymptotically a χ2
m distribution, we

obtain the following

Corollary 4.1 For s = 1, . . . , q let c∗s,1−β be the upper 100(1 − β) % point of the values
of T∗

s given by Eq. 4.15. We set

C∗
s,n,β := j−1(U∗

s,n,β) (4.16)

where

U∗
s,n,β = {μs ∈ RPm : Ts(ys

j,n;μs) ≤ c∗s,1−β}. (4.17)

Then

R∗
n,α =

q∏
s=1

C∗
s,n, α

q
(4.18)

with C∗
s,n,β , U∗

s,n,β given by Eqs. 4.20–4.21 is a region of approximately at least 100(1 −
α) % conf idence for μ jk . The coverage error is of order Op(n−2).

Note that the confidence region in Eq. 4.18 is a product of confidence regions
for the VW-means of the marginal axial distributions obtained using a Bonferroni
inequality (see Patrangenaru et al. 2010). We apply the Corollaries 4.1, 4.13 to the
three dimensional case. The element ([0 : 0 : 0 : 1], . . . , [0 : 0 : 0 : 1]) in (RP3)q, is the
unit in our group and is labeled 1q. Given two paired r.o.’s, H1, H2 in their spherical
representation on (RP3)q, we set Y = H̄1H2, and let μ jk be the extrinsic mean of
Y. Then testing the existence of mean 3D projective shape change from H1 to H2

amounts to the hypothesis testing problem

H0 : μ jk = 1q vs. H1 : μ jk �= 1q. (4.19)

Assume (H1,r, H2,r)r=1,...,n are i.i.d.r.o.’s from paired distributions on (RP3)q, such
that Y1 = H̄1,1H2,1 has a jk-nonfocal probability distribution on (RP3)q. Testing
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the hypothesis (Eq. 4.19) in the case m = 3, at level α, amounts to finding a
1 − α confidence region for μ jk given by Corollary 4.1, and, if the sample is small
and the extrinsic sample covariance matrix is degenerate, checking if 1q is in a
1 − α confidence region, amounts to finding the upper α

q cutoffs for the bootstrap
distributions of the test statistics T∗

s , s = 1, . . . , k − 5, and checking if the values of
Ts, for μ jk = 1q are all in the corresponding confidence intervals. That is

Remark 4.1 For m = 3, s = 1, . . . , q = k − 5 let c∗s,1−β be the upper 100(1 − β) %
point of the values of T∗

s given by Eq. 4.15. We set

C∗
s,n,β := j−1(U∗

s,n,β) (4.20)

where

U∗
s,n,β = {μs ∈ RP3 : Ts(Y

s
j,n;μs) ≤ c∗s,1−β}. (4.21)

Then

R∗
n,α =

q∏
s=1

C∗
s,n, α

q
, (4.22)

with C∗
s,n,β , U∗

s,n,β given by Eqs. 4.20–4.21, is a region of approximately at least
100(1 − α) % confidence for μ jk . Then we fail to reject at level α the hypothesis that
there is a nontrivial mean change in the 3D projective shapes H1, H2 if 1q ∈ R∗

n,α.

4.3 Two Sample Tests for VW Mean 3D Projective Shapes from Stereo Images

We consider now the case of two sample tests for VW mean projective shapes based
on independent samples, using the general tests developed in Section 3. Here M =
G = (RP)q, δ = 1q, q = k − 5, and

ϕ([x1], . . . , [xq]) = (ϕm+1([x1]), . . . , ϕm+1([xq])). (4.23)

In our examples we considered the group action α : (RP)q × (RP)q → (RP)q given
by the multiplication (Eq. 4.3):

α(h, k) = h 	 k. (4.24)

Therefore the hypothesis testing H0 : μ1, jk = μ2, jk on the Lie group ((RP)q,	) is
equivalent to the testing problem

H0 : μ−1
1, jk 	 μ2, jk = 1q. (4.25)

From Theorem 3.2, if the sample sizes n1, n2 are small, it suffices to compute the
bootstrap distribution of

D∗ = ϕ(H(X̄∗
n1, jk , X̄∗

n2, jk)), (4.26)

where H(h, k) = h 	 k and ϕ is given by Eq. 4.23.

Remark 4.2 Given that ϕ(1q) = 0 ∈ (Rm)q, testing the hypothesis (Eq. 4.25) at level
α is equivalent to testing if 0 is inside a 100(1 − α) % bootstrap confidence region
for ϕ(μ). Since the group multiplication in ((RP)q,	) is a product of projective
quaternion multiplications (Eq. 4.1), one may use simultaneous bootstrap confidence



Methodol Comput Appl Probab (2014) 16:485–506 499

intervals, based on the q affine marginal bootstrap distributions (D∗
1, . . . , D∗

q) = D∗
in Eq. 4.26. From Bonferroni inequalities, for each j = j = 1, . . . , q, we obtain a
100

(
1 − α

q

)
% confidence region C∗

j , that can be visualized as a 3D box, product of
three 100

(
1 − α

3q

)
% simultaneous confidence intervals.

This is the methodology used in our paper for the last application to image
analysis.

5 Applications to 3D Scene Data Analysis

5.1 Analysis of Image Data of Two Polyhedra

We first consider an application for matched pairs of 3D projective shapes from
digital images. The theory for such a two sample test ( test for mean projective shape
change ) is developed in Crane and Patrangenaru (2011), where it was applied to
stereo medical imaging. Here we consider a toy example consisting in two random
samples of polyhedral objects. The first sample, was considered in Patrangenaru
et al. (2010), and consists in 16 digital images of a polyhedral surface taken by a
uncalibrated digital camera (see Fig. 2).

A second data set of 16 digital images of a related polyhedral scene, that was
obtained by a slight modification of the first polyhedral object, is displayed in Fig. 3.

Using the Hartley et al. (1992) algorithm, we obtained the 3D reconstructions
from the uncalibrated camera images of the polyhedral surface (Fig. 4). There are
19 landmarks (visible corners), carrying labels as in Patrangenaru et al. (2010), 5 of
which form a projective frame. Therefore, in this example the projective shape data
is on P�19

3 = (RP3)14. Using Crane and Patrangenaru (2011), from the bootstrap
distribution of Veronese–Whitney sample means, we compute the 14 marginal T∗
statistics on the Lie group RP3.

For s = 1, . . . , 14, the values of the statistics Ts under the null hypothesis are all
larger than the corresponding T∗

s for the 95 % simultaneous confidence sets (showed
in Fig. 5 as cutoffs) are: T1 = 1735771.3, T2 = 2234801.4, T3 = 24260037.4, T4 =
949014.2, T5 = 942757.9, T6 = 148967185.2, T7 = 15847127.4, T8 = 3342761.1, T9 =

Fig. 2 3D polyhedral surface. Corners are used as landmarks
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Fig. 3 Top box slightly larger than in Fig. 2

Fig. 4 3D Reconstructions of configurations of corners in Fig. 3
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Fig. 5 Cutoffs of the T∗ marginal bootstrap statistics

Fig. 6 BBC actor data
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Fig. 7 Simultaneous confidence regions for the mean of the five axial marginals (affine coordinates)

Table 1 Simultaneous confidence affine intervals for mean projective shape change—BBC actor
data

Bootstrap simultaneous confidence intervals for facial landmarks 6 to 10

Coordinate 6 7 8 9 10

x (−1.26, 1.37) (−1.28, 1.33) (−1.56, 1.70) (−1.29, 1.22) (−1.43, 1.36)

y (−1.30, 1.28) (−1.27, 1.27) (−1.71, 2.18) (−1.41, 1.36) (−1.35, 1.28)

z (−1.34, 1.18) (−1.31, 1.20) (−1.62, 1.86) (−1.19, 1.27) (−1.48, 1.23)
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Fig. 8 Epicurus bust images

8042772.6, T10 = 15528559.7, T11 = 3800842.3, T12 = 35097853.3, T13 = 24107515.0,
T14 = 7085996.9.

On the other hand, the corresponding values of the bootstrap cutoffs T∗
s , s =

1, . . . , 14 are: T∗
1 = 23.9831, T∗

2 = 38.9948, T∗
3 = 441.3134, T∗

4 = 44.4325, T∗
5 =

25.1901, T∗
6 = 305.9000, T∗

7 = 74.7575, T∗
8 = 24.2130, T∗

9 = 35.1296, T∗
10 = 204.4511,

T∗
11 = 42.3008, T∗

12 = 40.7353, T∗
13 = 113.6289, T∗

14 = 26.3761. The equality of the two
population mean projective shapes is rejected at level α = 0.05. We infer that the two
polyhedral objects are not the same.

5.2 Example 2—Two Sample Test for Means of Independent Pairs

Our data consists in 14 digital camera images of an artist in different disguises (BBC
data). The face images data set was used in the context of 2D projective shape in
Mardia and Patrangenaru (2005); the need for a 3D projective shape analysis of this
data was mentioned in Patrangenaru et al. (2010), where the authors gave a graphic
argument for the equality of the mean 3D projective shapes of a group of facial
landmarks, from the frontal images, respectively from the one quarter images. We
used 8 frontal images, and 6 one quarter images, as shown in Fig. 6. The goal is to
test if indeed the projective shape of a 3D configuration of landmarks on the actor’s
face as extracted from frontal images, is, on average, the same as its projective shape
when one quarter views are used in its 3D reconstruction. Figure 10 in the Appendix
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Fig. 9 Simultaneous confidence regions for the statue data
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Table 2 Simultaneous confidence affine intervals for mean projective shape change—statue data

Bootstrap simultaneous confidence intervals for statue landmarks 2, 3, 7, 9

Coordinate 2 3 7 9

x (−11.52, 11.61) (−28.65, 30.81) (−1.96, 1.86) (−46.36, 42.62)

y (−11.29, 12.04) (−32.15, 32.57) (−1.84, 1.88) (−47.20, 46.36)

z (−12.32, 12.49) (−24.10, 26.31) (−1.22, 1.41) (−40.08, 37.08)

displays the actor image with the landmarks used in our analysis, numbered from 1 to
10. The reconstructed 3D configurations are posted at www.stat.fsu.edu/∼vic/MCAP
From the 3D configuration of 10 facial landmarks, we selected the landmark 1-
5 to construct the projective frame and computed the nonparametric bootstrap
distribution of H(X̄∗

n1, jk , X̄∗
n2, jk) in Eq. 3.23. The affine coordinates of the 10 − 5 = 5

projective coordinates of the bootstrap VW means for 350 bootstrap resamples are
displayed in Fig. 7, and the 95 % confident intervals based on 20,000 bootstrap
resamples of each coordinate are displayed in Table 1. Recall from Remark 4.2 that
the null hypothesis in this case amounts to all affine coordinates of μ being zero.
Since (0, 0, 0) is inside all the 95 % simultaneous marginal confidence affine intervals,
listed in Table 4, thus there is insignificant mean projective shape change of the
facial landmark configurations between the frontal and one quarter views images.
Therefore, we cannot reject the hypothesis that the frontal images and quarter views
are from the same person. In order to demonstrate that this allows to identify people,
one would need to calculate or simulate the power of the test under the alternative.

5.3 Example 3—Two Sample Test for Means of Half Bust

In this example the data consists in twenty four photos taken of the busts of the Greek
philosopher Epicurus. These are displayed in Fig. 8. Sixteen of the images are from
a one-head statue, others, in the third row are from a double-head statue, including
also one of a disciple of Epicurus. Nine landmarks, displayed in Fig. 10 were selected
from the right half of the face of the statues (Fig. 8). The landmark coordinates
and the reconstructed 3D configurations obtained from 2D matched configurations
in pairs of images are posted at www.stat.fsu.edu/∼vic/MCAP. Landmarks 1, 4, 5,
6, 8 were utilized to construct the projective frame. For the confidence region, we
computed 2,000,000 bootstrap VW sample means, based on landmarks 2, 3, 7, 9. For
the 4 landmarks, the point (0, 0, 0) is in the 12 simultaneous confidence intervals (see
Fig. 9). Therefore based on the given pictures, we fail to reject the null hypothesis
that on average the projective shapes of the selected landmark configurations are
the same (Table 2).

Acknowledgements The authors are grateful to the anonymous Referees for their excellent
constructive comments and suggestions that helped us significantly enhance the quality of the
manuscript, that was originally intended only as a computational and applied probability paper.

Appendix

Table 3 displays the registered coordinates of the 19 landmarks in each of sixteen
camera images. Camera images paired, each pair was used to reconstruct the 3D
polyhedral surface in the Fig. 3.

http://www.stat.fsu.edu/~vic/MCAP
http://www.stat.fsu.edu/$sim $vic/MCAP
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Fig. 10 Landmarks for actor
data (left) and for Epicurus
bust (right)

In Fig. 10 the facial landmarks used in our image analysis are marked from 1 to 10.
The registered coordinates are displayed in Table 4.

Table 4 Coordinates of facial landmarks for BBC actor data

Landmark 1 2 3 4 5 6 7 8 9 10
→
Image↓
1 265,236 302,232 341,227 377,221 302,179 315,186 328,176 279,149 338,143 303,103
2 299,214 334,210 368,206 400,203 334,161 344,169 358,161 315,134 371,131 338,90
3 266,253 305,251 330,248 365,242 296,209 311,212 321,204 286,185 336,181 308,125
4 201,254 221,250 250,247 228,242 209,203 215,212 233,204 208,179 257,176 234,131
5 264,234 298,234 332,236 361,235 302,194 312,200 321,193 285,165 338,165 302,120
6 367,237 395,227 422,218 449,209 393,182 404,184 412,176 356,167 406,147 365,119
7 327,246 354,244 387,239 416,241 358,206 367,212 377,206 343,176 399,176 365,132
8 273,248 290,248 319,247 353,246 288,211 284,219 305,209 284,179 332,181 304,140
9 269,218 300,219 332,217 365,218 302,170 312,174 328,170 287,150 347,149 314,109
10 197,227 217,232 239,236 275,238 215,188 211,196 231,191 220,159 266,167 244,121
11 304,221 339,216 371,212 401,210 335,169 344,173 359,167 316,149 374,146 338,106
12 247,253 274,252 302,251 335,249 265,211 271,219 284,209 260,182 310,180 281,132
13 282,238 305,236 337,232 367,232 298,191 301,200 316,191 294,161 344,158 314,120
14 346,222 373,218 403,218 435,218 374,172 386,180 398,170 359,146 413,142 378,98
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