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Abstract

Functional variables serve important roles as predic-

tors in a variety of pattern recognition and vision applica-

tions. Focusing on a specific subproblem, termed scalar-

on-function regression, most current approaches adopt the

standard L
2 inner product to form a link between func-

tional predictors and scalar responses. These methods may

perform poorly when predictor functions contain nuisance

phase variability, i.e., predictors are temporally misaligned

due to noise. While a simple solution could be to pre-

align predictors as a pre-processing step, before applying

a regression model, this alignment is seldom optimal from

the perspective of regression. We propose a new approach,

termed elastic functional regression, where alignment is in-

cluded in the regression model itself, and is performed in

conjunction with the estimation of other model parameters.

This model is based on a norm-preserving warping of pre-

dictors, not the standard time warping of functions, and pro-

vides better prediction in situations where the shape or the

amplitude of the predictor is more useful than its phase. We

demonstrate the effectiveness of this framework using simu-

lated and stock market data.

1. Introduction

Functional data analysis (FDA) [10] is a branch of statis-

tics that deals with functional variables, i.e. variables that

are real- or vector-valued functions on a fixed domain. FDA

has gained prominence in recent years because of the cen-

trality of functional data in many applications. In fact,

many problems involving so-called big data often consists

of time-varying measurements, leading to functional data.

Such data can be found in all branches of science, includ-

ing vision, pattern recognition, biology, medical imaging,

bioinformatics, social science, and so on. FDA deals with

summarizing, clustering, modeling, and predicting vari-

ables involving functional data.

One of the fast growing subtopics in FDA is the prob-

lem of regression involving functional variables, either as

predictors or responses or both. Depending whether the

predictor or the response or both are functional variables,

Morris [8] categorizes functional regression problems into

three types: (1) functional predictor regression (scalar-on-

function), (2) functional response regression (function-on-

scalar) and (3) function-on-function regression. In this pa-

per, we are interested in the problem of scalar-on-function

regression [2, 11, 3], where the predictor {f} is real-valued

function over a fixed interval, element of a pre-specified

functional space F , and the response variable {y} is a

scalar. A simple baseline model used frequently in the lit-

erature is called the functional linear model (FLM) given

by:

yi = α+

(

∫ T

0

fi(t)β(t) dt

)

+ ǫi, i = 1, . . . , n . (1)

Here β ∈ F plays the role of regression coefficient, fis
are observations of the predictor, yis are observations of the

response, and ǫis are the measurement errors. Various ad-

vancements beyond this simple model have been proposed

but the inner-product based mapping from F to R remains

central to this framework.

While the use of functional data has grown in recent

years, there has also been a growing awareness of a prob-

437



lem/issue that is specific to functional data. Functional data

most often comes with a phase variability, i.e., a lack

of registration between peaks and valleys across functions.

This situation arises, for example, when using bio-signals

for diagnosing medical conditions, and where the measure-

ments of signals across subjects lack synchronizations. Dif-

ferent subjects have different temporal evolutions of their

bio-signals, introducing an intrinsic phase variability in the

data. In mathematical terms, the predictor data is not {fi}
but rather {(fi ◦ γi)}, where γis are unknown time warping

functions that misalign predictor functions. (There are other

forms of phase variability also, such (f ◦γi)γ̇i, (f ◦γi)
√
γ̇i,

and so on, depending on if the time warping affects the am-

plitudes or not. The nature and expression of time warping

is ultimately dependent on the application.) In some cases

these misalignments or phase variability are simply linear

or affine shifts, while in other cases the misalignments are

nonlinear. One consequence of phase variability is the infla-

tion of variance in the functional data that renders classical

statistical model (Eqn. 1) ineffective. If we use such func-

tions in Eqn. 1, then the estimates of model parameters and

predicted values are adversely affected by the presence of

γis. One needs to account for the phase variability in pre-

dictor measurements to improve performance.

One approach to handling phase variability is to sepa-

rate the phase and amplitude components in the predictor

functions, as described in [7, 14] and others. The separation

results in alignment of peaks and valleys across functions

using nonlinear time warpings. These warpings correspond

to the phase components and the aligned functions corre-

spond to the shape or amplitude components. One may

envision regression models where both these components

– phase and shape – are useful as predictors in the model.

However, there are some other situations where only one of

them, most notably the shape of the function, that may be

of interest in predicting a response variable. This situation

arises, for instance, in cases where the response depends

primarily on the number of modes of the predictor func-

tions. The locations of these modes and anti-modes are less

important and, therefore, phase components are considered

nuisance variables. Motivated by such situations, we de-

velop a regression model where only the shape (or ampli-

tude) of a function is considered as a predictor and its phase

is removed from the consideration.

While phase-amplitude separation as a pre-processing

step is possible, it seems better to separate these two compo-

nents inside the regression model. The important question

is how? One may consider a model of the type:

yi = α+ sup
γi

(

∫ T

0

fi(γi(t))β(t) dt

)

+ ǫi, i = 1, . . . , n .

(2)

While this is a simple extension of the so-called functional

linear model, it has a major shortcoming in that the align-

ment is based on standard warping under the standard L
2

metric. As described in several places, see e.g. Marron [7],

Ramsay-Silverman [12], and Srivastava-Klassen [14], the

alignment of functions under the L
2 leads to a degeneracy

termed the pinching effect. Some authors avoid or minimize

pinching by restricting warpings to a much smaller set, in a

pre-determined manner. This restriction is unnatural as it

is mostly impossible to pre-determine the optimal subset of

warpings needed to align future data. Another possibility

is to assume the presence of additional information in form

of landmarks, points that need to be registered across func-

tions, to help avoid pinching and misalignment. However,

the availability of landmarks is rare in real data.

Notationally, we will use 〈·, ·〉 to denote the L
2 inner

product and ‖·‖ for the L2 norm. In this paper, we present a

novel solution that is motivated by the use of the Fisher-Rao

metric in functional data alignment [15, 14]. In fact, this

elastic functional data analysis (EFDA) framework suggests

several ideas, only one of which is pursued in this paper.

EFDA is based on replacing the use of L2 inner product and

the L
2 distance between functions by the Fisher-Rao Rie-

mannian metric and the Fisher-Rao distance between these

functions. The latter provides better mathematical and nu-

merical properties, and indeed leads to a superior registra-

tion between functions. The challenge in using the original

Fisher-Rao metric comes from its complicated expression,

but that is overcome using the square root velocity function

(SRVF), as described in Srivastava et al. [15]. One works

with the SRVFs qis instead of the predictors fis and the

Fisher-Rao metric becomes the standard L
2 metric. In this

framework, the time warpings of qis, given by (qi ◦ γi)
√
γ̇i,

are norm preserving. That is, ‖qi‖ = ‖(qi ◦ γi)
√
γ̇i‖ for

qi ∈ L
2 and all warpings γi, and thus pinching is no longer

possible. This, in turn, suggests two ways of fixing the prob-

lem in Eqn. 2:

1. Use Fisher-Rao Metric and SRVF Representation:

One can compute SRVFs of the given predictors,

and then simply replace the term supγi
〈fi ◦ γi, β〉

in Eqn. 2 by the Fisher-Rao based inner product:

supγi

〈

(qi ◦ γi)
√
γ̇i, β

〉

. Since any warping of qi in

this way preserves its norm, the pinching problem is

avoided.

2. Use a Norm-Preserve Warping and L
2 Metric: The

other option is to change the basic definition of the

warping itself, from the classical composition (fi ◦ γi)
to the norm-preserving action ((fi ◦ γi)

√
γ̇i). In the

new definition, a warping changes both the location

and the height of a function value. This suggests us-

ing supγi

〈

(fi ◦ γi)
√
γ̇i, β

〉

in Eqn. 2. That is, we as-

sume that fis are already in SRVF space and use them

as such. This process may be useful when the data is
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noisy and a further SRVF transformation enhances this

noise due to the presence of a derivative. By treating

fis as SRVFs, one obtains the nice properties of this

framework and avoids enhancing the noise. On the

other hand, this warping is different from the typical

warping f ◦ γi used in the alignment literature.

Each of these models avoid the pinching effect, and have

their own pros and cons. Ultimately, the choice of a model

depends on the nature of the data and the goals of the appli-

cation. The response variable in both these models is invari-

ant to the action of the time warping group on the predictor

functions.

In this paper, we will develop the second approach and

will call this the elastic functional regression model. In Sec-

tion 2, we develop the resulting elastic functional regression

model and present the parameter estimation technique in

Section 3. In Section 4, we demonstrate this model using

some simulated and real functional data, and compare its

performance against some current ideas in the literature.

2. Proposed Elastic Framework

In this section we layout an elastic functional regression

model for scalar-on-function problem with the property that

the response variable is invariant to the phase component of

the predictor. This framework is based on ideas used previ-

ously for alignment of functional data, or phase-amplitude

separation, using the Fisher-Rao metric and the SRVF rep-

resentation of functions. We start by briefly introducing

those concepts and refer the reader to [15] for details.

As mentioned earlier, the use of L
2 inner-product or

L
2 norm for alignment of functions leads to a well-known

problem called the pinching effect. While some papers

avoid this problem using a combination of external penal-

ties and search space reductions, a superior solution comes

from using an elastic Riemannian metric with appropri-

ate invariance properties. This metric, called the Fisher-

Rao metric, avoids the pinching effect without any exter-

nal constraint and results in better alignment results. Let

f be a real-valued function on the interval [0, 1] (with ap-

propriate smoothness) and let F denote the set of all such

functions. For the purpose of alignment, one represents

it using a square-root velocity function (SRVF) defined as

q(t) = ḟ(t)/
√

|ḟ(t)| or q(t) = sign(ḟ(t))
√

|ḟ(t)|. These

two expressions are algebraically equivalent. One of the

advantages of using SRVF is that under the transforma-

tion f 7→ q, a complicated Fisher-Rao Riemannian metric

and the Fisher-Rao distance into much simpler expressions.

That is:

〈〈f1, f2〉〉FR = 〈q1, q2〉 , and dFR(f1, f2) = ‖q1 − q2‖ .

If we warp a function f by a time warping γ, i.e., map f 7→
(f ◦ γ), then its SRVF changes by q 7→ (q ◦ γ)√γ̇. The

latter is often denoted by (q, γ). The invariance property of

the Fisher-Rao metric implies that for any q1, q2 ∈ L
2 and

γ ∈ Γ, we have: ‖(q1, γ) − (q2, γ)‖ = ‖q1 − q2‖. In other

words, the action of Γ on L
2 is by isometries. A special

case of this equation is that ‖(q, γ)‖ = ‖q‖ for all q and γ.

Thus, this action preserves the L
2 norm of the SRVF and,

therefore, avoids any pinching effect.

This framework motivates several solutions for avoid-

ing the pinching problem associated with the inner-product

term in Eqn. 2. While one can work with the SRVFs of

the given predictor functions, they are prone to noise in

the original data due to the involvement of a time deriva-

tive in the definition of SRVF. In case the original data

is noisy, this noise gets enhanced by the derivative. As

a workaround to this problem, we treat the given predic-

tor functions to be in the SRVF space already. That is,

we assume the action of warping γi on an fis is given by

(fi ◦ γi)
√
γ̇i and not fi ◦ γi. With this action, we have that

‖(fi, γi)‖ = ‖(fi ◦ γi)
√
γ̇i‖ = ‖fi‖.

Based on this argument, the inner-product term in Eqn.

2 can be replace by the term: supγi
〈β, (fi, γi)〉. This is a

scalar quantity and represents a modified linear relationship

between the predictor and the response. One can impose a

more sophisticated single-index model on top of this con-

struction as follows. Such single-index models have been

used commonly in conjunction with the Functional Linear

Model (FLM), see e.g. [16, 1, 13, 4]. Let h : R → R be

any smooth function defined on the real line, and define the

model:

yi = h
(

sup
γi

〈β, (fi, γi)〉
)

+ ǫi, i = 1, . . . , n (3)

The inclusion of h allows the model to capture nonlinear

relationships between the predictor and the response vari-

ables. This single-index model (SIM) is generally the same

as a generalized functional linear model (GFLM), but in

SIM the link function h is unknown.

3. Parameter Estimation and Prediction

Next we consider the problem of estimating model pa-

rameters under the model given in Eqn. 3. The list of pa-

rameters, include the link function, h, and the coefficient

of regression β. We take an iterative approach given in [5],

where one updates the estimates of h or β while keeping the

other fixed. Thus, we first focus on the techniques for up-

dating 1) the estimation of β and 2) the estimation of single-

index model h separately, and then we propose an iterative

process for joint-estimation.

3.1. Estimation of β keeping h fixed

Given a set of observations {(fi, yi)}, the goal here is

to solve for the coefficient of regression β, while keeping

h fixed, using maximum-likelihood estimation. In order to
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reduce the search space to a finite-dimensional set, we will

assume that β ∈ {∑J
j=1 cjbj |cj ∈ R} for a fixed basis set

B = {bj , j = 1, 2, . . . } of L
2([0, 1],R). The estimation

problem is now given by:

ĉ = argmin
c∈RJ

H(c), where H : Rd → R,

H(c) =





J
∑

i=1

(yi − h(sup
γi

〈

J
∑

j=1

cjbj , (fi, γi)

〉

)2



 .

This optimization can be summarized into an algorithm as

follows.

Algorithm 1 Estimation of β keeping h fixed

1: Initialization Step. Choose an initial c ∈ R
J and com-

pute β(t) =
∑J

j=1 cjbj(t).
2: Find {γ∗

i } using Dynamic Programming, γ∗

i =
argminγ∈Γ ‖β − (fi, γi)‖2, for each i = 1, . . . , n.

3: Compute the aligned functions f̃i ← (fi ◦ γ∗

i )
√

γ̇∗

i .

4: Use an optimization code (such as fminunc in matlab)

to find ĉ that minimize the cost function H function.

5: Update β(t) 7→ ∑J
j=1 ĉjbj(t). If the |H(ĉ)| is small,

then stop. Else return to step 2.

3.2. Estimation of h keeping β fixed

Next we consider the problem of estimating the link

function h given the data and the estimated β. The rea-

son for introducing this single-index model is to capture

nonlinear relationship between the predicted responses and

observed responses. While there are many nonparametric

estimators for handling h, we keep the model simple by re-

stricting to lower-order polynomials. Hence, this link func-

tion can either be linear, quadratic, cubic, and so on: h(x) =
ax+b, h(x) = ax2+bx+c, and h(x) = ax3+bx2+cx+d,

etc. In our experiment, we use the first three polynomial

functions for h.

In terms of estimating h, we use the current esti-

mate β̂ to predict the responses according to: ŷ
(train)
i =

supγi

〈

β̂, (f
(train)
i , γi)

〉

, Then, we fit a polynomial func-

tion h between the predicted responses ŷ
(train)
i and the ob-

served responses y
(train)
i using the least squares error crite-

rion.

The full parameter estimation procedure is as presented

in Algorithm 2.

3.3. Prediction of Response Under the Elastic Re­
gression Model

One of the main goals of a regression model is to predict

values of the response variable for the future predictor ob-

servations. We describe that prediction process in the elastic

Algorithm 2 Elastic Scalar-on-Function Regression Model

1: Initialize h as the identity function (h(x) = x).

2: Given h, use Algorithm 1 to estimate β̂.

3: For a given β̂, fit the single-index model using the least

squares criterion and update h.

4: If the stopping criterion is met, then stop. Else, return

to step 2.

functional regression model. This process involves aligning

the predictors to the coefficient β̂ using dynamic program-

ming algorithm. For a given f (test), the predicted value of

y is:

ŷ = ĥ
(

sup
γi

〈

J
∑

j=1

ĉjbj , (f
(test), γi)

〉

)

. (4)

We will use this process to evaluate the prediction perfor-

mance of our proposed model, and other current models,

using both simulated data and real data.

4. Experimental Illustration

In this section, we compare our method with four models

that are natural alternatives to the proposed model. Either

these models are commonly used in the literature or they are

simple modifications of the current models for handling the

phase variability in the predictors. These models are: Func-

tional Linear Model (FLM); Pre-Aligned Functional Linear

Model (PAFLM); Nonparametric regression model (NP) us-

ing a Gaussian kernel function and two different metrics:

L
2 distance and elastic distance. We briefly summarize and

introduce these models.

Functional Linear Model (FLM) Functional Linear

Model is first introduced by Ramsay and Dalzell [11] and

the regression model can be expressed as in Eqn. 2. This

model ignores phase variability in the predictor data and is

quite vulnerable to the variability.

Pre-Aligned Functional Linear Model (PAFLM) We

also implemented regression model called Pre-Aligned

Functional Linear Model (PAFLM). PAFLM is the model

which pre-aligns the training data and the test data using one

of several existing alignment algorithms and then performs

standard FLM. For example, the registration can be imple-

mented by using Square-Root Velocity Functions (SRVFs)

and template function or karcher mean from the “Com-

plete Alignment Algorithm” [15]. This alignment is natu-

rally suboptimal from the perspective of regression, since

the response variable is not used in phase separation.

Nonparametric Regression Model Nonparametric re-

gression is the model that does not require any predeter-
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mined form but driven from the observed data. It has been

developed and studied by Ferraty and Vieu [6] and several

other authors, and takes the form: yi = r(fi(t))+ ǫi, where

r the unknown smooth map from F to R, and is estimated

by the functional Nadaraya-Watson (NW) estimator [9]. For

the given data (fi, yi) for i = 1, 2, . . . , n, the estimator is

given by:

G(f) =

∑n
i=1 yiK(d(fi, f)/m

∗)
∑n

i=1 K(d(fi, f)/m∗)
, (5)

where: K is a Gaussian kernel, and d is a chosen distance on

the predictor space. The choice of d is critically important

in kernel estimators. In the experiments presented later, we

use:

• The standard L
2 norm between predictors.

• The elastic distance in SRVF space we define,

ds(f, fi) = λda + (1 − λ)dp, where λ is a propor-

tion parameter, da = argminγ∈Γ ||f − (fi, γi)|| and

dp = ||√γ̇∗ −
√

γ̇∗

I ||.

The scalar quantity m∗ is the optimal bandwidth by a

cross-validation procedure. m∗ = argminm
∑n

i=1(yi −
G(−i)(fi))

2, with G(−i)(f) =
∑

n
j=1,j 6=i

yjK(d(fj ,f))/m)
∑

n
j=1,j 6=i

K(d(fj ,f))/m) us-

ing the training data.

Next, we present experimental results from these meth-

ods on different data sets.

4.1. Simulated Data: Illustration of Method

As the first study, we simulate data for evaluating esti-

mation and prediction performance of our elastic functional

regression model.

Simulation:

In this experiment, we simulate n = 20 observations using

the model stated in Eqn. 3. For the predictors, we use a

truncated Fourier basis and random coefficients to form the

functions {fi}. Given these functions, we perturb them

using random time warpings {γi} to obtain the predictors

{(fi, γi)}. We also simulate the coefficient function β using

the same Fourier basis but with a fixed coefficient vector

c0 = [1, 1, . . . , 1]. We plug these quantities in the model

and add independent observation noise, ǫi ∼ N(0, 0.012),
to obtain the responses {yi}. These simulated quantities are

shown in Fig. 1. In the following evaluations, we randomly

divide this set in half training and half testing.

Model Estimation:

Using the training data, we estimate the model parameters

h and β, as described in Algorithm 2. In order to evaluate

this algorithm we actually use three different bases when

fitting the model: 1) Fourier basis with only two elements,

{fi} {(fi, γi)} {yi}

Figure 1: Simulated Data

2) Fourier basis with four elements, and 3) B-spline basis

with four elements. The reason for using different bases for

the estimation problem is to study the effects of bases on the

model performance. We also use three different link func-

tions, h(·): linear, quadratic, and cubic polynomial func-

tions in the estimation setup. .

(a) β̂ vs. β0 (b) h: linear (c) h: quad (d) h: cubic

Figure 2: β̂ (solid curve) vs. β0 (dashed curve) and the

evolution of cost function H for each link function, h(·)

Fig. 2 presents results of the estimation process for

different setting. Each row corresponds to a different

choice of basis set for estimating β, i.e. Fourier basis with

two elements (J = 2) (first row), Fourier basis with four

elements (J = 4) (second row), and B-spline basis with 4

elements (third row). The last three columns correspond

to the three choices of the link function h In Fig. 2a, we

display estimated coefficient functions β̂ (dashed red line)

versus actual function β0 (solid red line) for the different

setting. We also plot the evolution of cost function H in Al-

gorithm 2 for each of link functions: linear, quadratic, and

cubic polynomial functions, in 2b, 2c, and 2d, respectively.

These plots show that the cost function H goes down in all

cases and the optimization algorithm provides at least local

solutions.

Prediction Performance:

To evaluate model performance, we use the model parame-

ters estimated using the training data for predicting response

variable in the test data. This prediction followed the pro-
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cedure laid out in described in Eqn. 4. The predicted re-

sponses are then compared with the true responses to quan-

tity the prediction error.

(a) Fourier basis

with J = 2

(b) Fourier basis

with J = 4

(c) B-spline basis

with 4 elements

Figure 3: Prediction of Regression Models using Fourier

basis with J = 2, Fourier basis with J = 4, and B-spline

basis with 4 elements

Fig. 3 shows the predicted values of the response vari-

able using different models, along with the true values

of the response. In addition to our elastic functional re-

gression model, we study the standard Functional Linear

Model (FLM) and the Pre-Aligned Functional Linear Model

(PAFLM). Similar to the estimation problem, we study pre-

dictions using three different basis functions: Fourier ba-

sis with J = 2, Fourier basis with J = 4, and B-spline

basis with 4 elements. These corresponding results are

shown in 3a, 3b, and 3c, respectively. As earlier, we con-

tinue to use three different link functions h(·): linear (top),

quadratic(middle), and cubic (bottom) polynomial func-

tions. These prediction plots show that the predictions of

our elastic functional regression are closer to the actual re-

sponse variables compared to two traditional models.

To evaluate the performance of the models more pre-

cisely, we randomly iterate this process 5 times to ensure

how elastic functional regression performs compared to

other methods. Then we compute the average and the stan-

dard deviation of Mean Squared Prediction Errors (MSPE =
1
n

∑n
i=1(yi− ŷi)

2) from 5 different sets and use these quan-

tities to compare different models. In addition to FLM and

PAFLM mentioned above, we also implement and compute

MSPEs of two nonparametric regression models – NP us-

ing the L
2 norm and L

2 using elastic distance (described in

section 4). These last two approaches are model free and do

not depend on estimating any regression coefficients. The

numerical results for the average of the five MSPEs and cor-

responding standard deviation on simulated data are shown

in Table 1 and Table 2. As these results show, the proposed

elastic functional regression model is able provide a bet-

ter prediction performance than the competing models de-

spite using very simple models. In addition, the predictions

from PAFLM are less accurate since this method is align-

ing the functional predictors without considering response

variables, {yi}. Also, the nonparametric regression model

cannot perform well since this model captures all its infor-

mation about data. This can be a problem since it captures

all errors.

Basis Fourier2 Fourier4 Bspline4

FLM 21.70 (20.79) 21.15 (19.16) 27.98 (33.47)

PAFLM 22.66(11.68) 147.12 (141.10) 29.89 (37.74)

h: Linear 1.99 (0.90) 2.16 (1.04) 3.76 (3.17)

h: Quadratic 0.87 (0.96) 0.96 (1.14) 5.47 (4.38)

h: Cubic 4.93 (4.32) 4.14 (4.06) 11.56 (7.88)

Table 1: The average and the standard deviation (in paren-

theses) of the five MSPEs for three model-based methods

on simulated test data.

Model NP-L2 NP-elastic

MSPE 10.39 (9.12) 17.73 (14.81)

Table 2: The average and the standard deviation (in paren-

theses) of the five MSPEs for nonparametric regression

model under the two distances.

4.2. Application to Real Data

Next, we study the proposed model on some real data

extracted from the Historical Stock data. The goal of this

study is to use historical stock data, in form of functional

predictors, and predict average stock value over a future

time interval.

4.2.1 Description of the Data

QuantQuote has large amount of free historical stock data

that is freely available for download from their website.

There are total of 200 companies and each company has

total 3,926 stock entries during the interval 1/2/1998 to

8/9/2013. For each company’s stock, we exported stock

prices from 7/8/2011 to 11/28/2011 to form functional pre-

dictors. So there are 100 time points over the selected inter-

val for describing the predictor functions. Then, we com-

pute the average value of stock prices over a future interval,

namely 11/29/2011 to 8/9/2013, to form the scalar response

variable.

The Fig. 4 shows the example of this stock data. The

200 functional predictors are shown in Fig. 4a and scalar
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(a) Stock Prices, {fi} (b) {yi}

Figure 4: Historical Stock Data

response variables are shown in Fig. 4b. We use first 140

curves to fit the model and remaining 40 curves as test.

4.2.2 Analysis of the Data

For representing the coefficient function β, we use a B-

spline basis with 20 elements and estimate the parameters

using Algorithm 2.

(a) {fi} vs. Warped {fi} (b) {γ∗

i }

Figure 5: Training Set

(a) {fi} vs. Warped {fi} (b) {γ∗

i }

Figure 6: Test Set

Fig. 5 and 6 show the aligned functional predictors ob-

tained by warping during the estimation and the prediction

stages of the method. The original functions are drawn in

black dashed curves and the warped functions are drawn

using the red/blue solid curves. Fig. 5a shows the curves

for the training data and Fig. 6a shows the curves for the

test data. The corresponding optimal time warping func-

tions, {γ∗

i } on the training set and the test set are shown in

5b and 6b, respectively. Since the predictor functions look

more aligned after the algorithm than before, we can assume

that the data contains phase variations that are detrimental to

the prediction performance. By handling these phase vari-

ations, we can expect higher prediction accuracy as shown

next.

4.2.3 Prediction Results

The values of the predicted response under the different

models are shown in Fig. 7. Red marks correspond to the

actual response variables on the test set. In this figure, we

compare our elastic functional regression model (h: linear

(first panel) or h: quadratic (second panel) or h: cubic

(third panel), cyan) with four methods similar to the simu-

lated data analysis: Functional Linear Model (FLM: green),

Pre-Aligned Functional Linear Model (PAFLM: blue), Non-

parametric regression model on L
2 space, (NP-L2: ma-

genta) and elastic distance (NP-elastic: yellow).

Figure 7: Predicted vs. Actual

In Fig. 7, we can see that predictions of elastic functional

regression model are closer to the actual responses com-

pared to the predictions of other methods. To investigate

our results numerically of the real data, we compute MSPE

and R2. R2 is a coefficient of determination that gives a

measure of goodness-of-fit of the least squares model. We

can compute R2 by following equation:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

, where i = 1, . . . , n

where yi is the actual response variable on the test set, ŷi is

the prediction, ȳ is the mean of actual response variables on

the test set. n is the number of predictors on the test set.

Model MSPE (R2)

FLM 72.1350 (0.9156)

PAFLM 77.0300 (0.9099)

h : Linear 54.7425 (0.9359)

h : Quadratic 54.2575 (0.9365)

h : Cubic 55.1075 (0.9355)

NP-L2 96.5150 (0.8870)

NP-elastic 79.8980 (0.9065)

Table 3: MSPE and R2 (in parentheses) of each model

Table 3 presents MSPE of each model and corresponding

R2 in parentheses. It shows that the predictions of elastic
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functional regression model outperformed most compare to

other predictions of the functional regression models.

Predictions from the kernel regression model performed

less accurately. This might be due to the observed functions

having all different heights (relatively) and different start-

ing points. Functional predictors in each training data and

test data have different shapes (different heights and starting

points) so nonparametric method cannot handle this prob-

lem.

5. Summary

The statistical functional regression model with phase

variability is a well-known challenging problem. We have

proposed a new elastic approach for handling predictor

phase in functional regression models which is based on

a norm-preserving warping of the predictors and handling

the nuisance phase variability by optimizing the L
2 inner

product over the warping group in the model. We compare

MSPE and R2 of the model with several existing methods to

demonstrate the effectiveness of this technique using simu-

lated data and historical stock data.
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