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Temporal point process, an important area in stochastic process, has been extensively

studied in both theory and applications. The classical theory on point process focuses

on time-based framework, where a conditional intensity function at each given time can

fully describe the process. However, such a framework cannot directly capture important

overall features/patterns in the process, for example, characterizing a center-outward

rank or identifying outliers in a given sample. In this article, we propose a new,

data-driven model for regular point process. Our study provides a probabilistic model

using two factors: (1) the number of events in the process, and (2) the conditional

distribution of these events given the number. The second factor is the key challenge.

Based on the equivalent inter-event representation, we propose two frameworks on

the inter-event times (IETs) to capture large variability in a given process—One is to

model the IETs directly by a Dirichlet mixture, and the other is to model the isometric

logratio transformed IETs by a classical Gaussian mixture. Both mixture models can

be properly estimated using a Dirichlet process (for the number of components) and

Expectation-Maximization algorithm (for parameters in the models). In particular, we

thoroughly examine the new models on the commonly used Poisson processes. We

finally demonstrate the effectiveness of the new framework using two simulations and

one real experimental dataset.

Keywords: temporal point process, center-outward rank, Dirichlet mixture, Gaussian mixture, Dirichlet process,

isometric logratio transformation

1. INTRODUCTION

Temporal point process is a collection of mathematical points randomly located on the real line,
where the domain can be a finite interval or the whole line [1]. It is very common to observe
temporal point pattern data in practice, for example, a sequence of time points of incoming calls in
a phone, the occurrence of earthquakes, or the usage of a mobile app [2]. Studying the underlying
mechanisms of these random times is an important subject in the field of stochastic process.
Classical models on temporal point process are time-based, where we treat the sequence of times
as having an “evolutionary character.” That is, what happens now may depend on what happened
in the past, but not on what is going to happen in the future [3]. A time-based function, referred
to as conditional intensity function, is used to describe the process. For regular point processes [4],
it was shown that the conditional intensity function can determine the probability structure of the
process uniquely [1]. However, because of the computational complexity, it is often a significant
challenge to estimate the conditional intensity function. Various simplified or parametric forms
have been introduced to model practical observations. For example, renewal processes are used to
approximate complex point processes [5]; Hawkes processes are often used in the finance area [6];
and neuronal spike trains have been commonly modeled using parametric point processes [7, 8].

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.852314
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.852314&domain=pdf&date_stamp=2022-04-04
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wwu@stat.fsu.edu
https://doi.org/10.3389/fams.2022.852314
https://www.frontiersin.org/articles/10.3389/fams.2022.852314/full


Chen et al. Rank-Based Models for Point Processes

We point out that these time-based methods only focus on
modeling the probability distribution at every time point. They
do not characterize patterns or structures of the process as a
whole. For example, they do not provide a notion of “center”
(or “template”) of a set of point process realizations, provide a
center-outward rank on each realization, or identify outliers in
the data. The center-outward rank has been thoroughly studied
with the notion of statistical depth formultivariate and functional
observations. Conditioned on the number of events, a point
process can be treated as a multivariate sequence [9]. Commonly
used depth methods such as halfspace depth [10], simplicial
depth [11], Mahalanobis depth [9, 12], and likelihood depth
[13], can be directly applied. All these depth methods own
desirable mathematical properties, which are well summarized
by Zuo and Serfling, [14]. Alternatively, a smoothing procedure
can be adopted to convert point process to a smooth function.
In this case, commonly used depth on functional data such as
projection-based functional depths [15], band depth [16], half
region depth [17], multivariate functional halfspace depth [18],
and Pareto depth [19] can be adopted to examine center-outward
rank in the given data. A formal definition of statistical depth
was provided for functional data [20], where they pointed out
six properties that a valid functional depth should satisfy. Note
that all depth methods only provide a rank, but do not describe a
model or distribution for given observations. In contrast, we aim
to propose rank-based models on the temporal point processes in
this article.

In practice, point processes are often studied in a finite time
domain [0,T]. In this case, the event times can be equivalently
represented using inter-event times (IETs). As the IETs are
non-negative with sum being the constant T, one may adopt
a Dirichlet distribution to describe them directly. This uni-
modal distribution can naturally define a center-outward rank
of the data, and the depth function on a point process is
called a Dirichlet depth [21]. This is shown in Figure 1A as
one illustration, where we generate 2000 two-event realizations
from a binomial point process (see details in Section 3). The
IETs of two events from a binomial process are displayed in a
three-dimensional space.

FIGURE 1 | Uni-modal and multi-modal IETs. (A) IETs of a two-event binomial process, with a uni-modal distribution. (B) IETs of another two-event binomial process,

with a multi-modal distribution.

However, practical data may have more complicated
structures than a uni-modal distribution; that is, a single
Dirichlet distribution may not be able to fully characterize the
details of the conditional distribution of IETs. Using another
binomial point process, its 2000 two-event IET vectors are
shown in Figure 1B, where a clear multi-modal distribution is
observed. In this article, we further propose to extend the notion
of rank-based Dirichlet model to a more general framework—a
Dirichlet mixture model, where we model the IETs of a point
process (conditioned on the number of events) using a mixture
of Dirichlet distributions.

For uni-modal Dirichlet distribution, the parameters
in the model can be easily estimated using a classical
maximum likelihood approach. However, the estimation is
more challenging for a mixture model. In principle, we need
to do two estimations: one is on the number of mixture
components, and the other is on the parameter values given
the component number. We propose to use a Dirichlet process
and Expectation-Maximization (EM) algorithm to handle these
two estimations, respectively. Dirichlet Process Mixture (DPM)
model is a nonparametric mixture model which allows infinitely
many components. The method can conduct clustering on
observations without model selection. The Dirichlet Process was
first presented as a class of prior distributions for nonparametric
problems [22], and then extended with the formal definition
for Dirichlet Process Mixture [23]. In particular, Markov chain
Monte Carlo (MCMC) methods are often used for the purposes
of inference and sampling in the DPMmodel.

For the Dirichlet model, conjugate prior is often not available
[24, 25]. In this case, approximations based on Monte Carlo
methods can be computationally expensive. In order to take
advantage of the conjugate priors and simplify the calculation,
instead of modeling IETs directly using a Dirichlet mixture,
we also propose an indirect model by adopting the isometric

logratio transformation in compositional data analysis [26, 27].
By this bijective transformation, the IETs are transformed to
an unconstrained Euclidean space. Then, a classical multivariate
Gaussian Mixture model (GMM) can be adopted to model the
transformed data. For GMM, the closed-form estimations in the
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Dirichlet process posterior and EM algorithm are thoroughly
studied in Murphy [28] and Bilmes [29] and no approximation
is needed.

The rest of this manuscript is organized as follows: In Section
2, we will provide details of the Dirichlet model, Dirichlet
mixture model on the IETs and Gaussian mixture model on
the transformed IETs. The estimation procedures, including
Dirichlet process and EM algorithm will also be given. In Section
3, two simulation experiments will be used to illustrate the
center-outward ranking of the proposed models. We will also
apply the new methods to conduct a classification task in a real
experimental data set. Finally, we will summarize our work in
Section 4.

2. METHODS

2.1. Likelihood in a Temporal Point Process
Mathematical modeling on the temporal point process
has been a central problem in stochastic process.
We will at first review the classical theory on point
process and then provide a new framework for the
likelihood representation.

2.1.1. Review of the Classical Theory
Classical methods have focused on regular point processes,
where the event times can be ordered increasingly without
overlapping. Only finite number of events are allowed in
any finite time interval, and the commonly used conditional
intensity function can be well defined. In practical use, point
process observations are often in a finite domain and we limit
our study in an interval [0,T], where T > 0 denotes the
time length.

Assume a temporal point process is given as H = {si} with
si ∈ R

+ and i = 1, 2, · · · . Denote the conditional density
function f (sn+1 | Hsn ) of the event time sn+1 given the history
of previous events Hsn = (s1, · · · , sn). Using the chain rule of
the conditional distribution, the joint density can be represented
as follows:

f (s1, s2, · · · ) =
∏

n

f (sn | sn−1, · · · , s1) =
∏

n

f (sn | Hsn−1 ).

For any u > sn, the conditional intensity function is defined in
the following form:

λ∗(u) = f (u | Hsn )

1− F(u | Hsn )
,

where F(u | Hsn ) =
∫ u
sn
f (t | Hsn )dt is the conditional cumulative

distribution function. The conditional intensity function λ∗(u)
models the mean number of events in a region conditional on the
past, and it can determine the probability structure of a regular
point process uniquely [1]. Using λ∗(u), the likelihood of a point
process realization (s1, · · · , sn) on (0,T) is given by

L = (

n
∏

i=1

λ∗(si)) exp(−3∗(T)),

where 3∗(u) =
∫ u
0 λ

∗(t)dt is the integrated conditional
intensity function.

This time-based description characterizes the probability
structure at any time. However, it does not describe the center-
outward rank, or relative “importance,” of each realization.
For example, for a homogeneous Poisson process (HPP) with
constant intensity λ∗(s) = λ, the likelihood is:

LHPP = (

n
∏

i=1

λ) exp(−
∫ T

0
λdt) = λn exp(λT).

Given the time interval [0,T] and intensity rate λ, the likelihood
only depends on n. That is, realizations with the same number of
events will have equal likelihood, regardless of their event times.
Such likelihood cannot properly define a center-outward rank to
indicate the centrality (or outlyingness) of each realization. In the
article, we aim to propose a data-drivenmodel on point processes
which leads to a proper center-outward rank.

2.1.2. Rank-Based Likelihood Representation
To characterize the overall pattern of a temporal point process
s = (s1, · · · , sn), we need to measure the likelihood of two types
of randomnesses: (1) the number of events in the process and
(2) the distribution of these events. That is, the likelihood of the
process s can also be calculated via the following equation.

p(s = (s1, · · · , sn)) = p(|s| = n) · p(s = (s1, · · · , sn) | |s| = n),
(1)

where |s| denotes the cardinality of the sequence s.
Note that |s| is a random variable. For a regular point process

on [0,T], p(|s| < ∞) = 1. As |s| is only a one-dimensional
counting variable, there are a lot of possible ways to model
it such as a parametric Poisson model or a nonparametric
model. The key challenge is at the conditional distribution p(s |
|s|). In the special case of a Poisson process with (history-
independent) intensity function λ(t), it is known that |s| ∼
Poisson

(

∫ T
0 λ(t)dt

)

, and

s1, · · · , sn | |s| = n
i.i.d.∼ λ(t)

∫ T
0 λ(t)dt

.

A point process, however, in general is history-dependent, and
there will be no such explicit formula for the conditional
distribution. Parametric models such as Gaussian distribution
[9] and Dirichlet distribution [21] can be considered. Our main
goal of this article is to provide a rank-based parsimonious
model on this conditional distribution which can properly
characterize practical observations. This will be clearly given in
the following subsections.

2.2. Rank-Based Conditional Model
2.2.1. Dirichlet Model
In this section, we will provide models for the conditional
distribution p(s = (s1, · · · , sd) | |s| = d) in Equation (1). Given
the number of events, a parsimonious Dirichlet distribution
is proposed to describe the conditional distribution of inter-
event times. Note that this model may not describe the true
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likelihood of the realization, but provides a reasonable data-
driven description of the importance or center-outward rank of
the given realization. Therefore, the probability representation is
actually a “pseudo-likelihood,” and is denoted as p̃.

It is commonly known that a point process can be equivalently
represented by their inter-event times (IETs). That is, for a point
process with d events 0 < s1 < s2 < · · · < sd < T, its IETs are
given as u1 = s1, u2 = s2−s1, · · · , ud = sd−sd−1, ud+1 = T−sd.
The IET sequence u = (u1, u2, · · · , ud+1) forms a d-dimensional
simplex (scaled standard simplex) as:

S
d = {(u1, u2, · · · , ud+1) ∈ R

d+1
: u1 + u2 + · · · + ud+1

= T, ui ≥ 0, i = 1, 2, · · · , d + 1},

which has the same support as a Dirichlet distribution. Therefore,
it is natural to adopt a Dirichlet distribution to model the
conditional distribution of the IETs as follows.

2.2.1.1. Dirichlet Model
For a point process s = (s1, · · · , sd) in time interval (0,T), let
s0 = 0 and sd+1 = T. Then its IET vector u = (u1 = s1− s0, u2 =
s2 − s1, · · · , ud+1 = sd+1 − sd) ∈ R

d+1 lies on a d-dimensional
simplex. We model the conditional distribution of this process
using a d+ 1 dimensional Dirichlet distribution with parameters

α = (α1, · · · ,αd+1) ∈ R
d+1
+ on its IET vector. That is:

p̃(s = (s1, · · · , sd)||s| = d) = Ŵ(
∑d+1

i=1 αi)
∏d+1

i=1 Ŵ(αi)

d+1
∏

i=1

(
ui
T
)αi−1, (2)

where Ŵ(·) is a Gamma function, and αi > 1 for i = 1, · · · , d+ 1
to guarantee the unique mode in the Dirichlet model.

Based on the IET representation, the Dirichlet model in
Equation (2) can naturally take into account the orderedness
and boundedness of all events in a point process. In addition,
the center of the process can be characterized by the mode of
the Dirichlet distribution. In a Dirichlet model, the likelihood
reaches the maximumwhen ui = αi−1

∑d+1
j=1 αj−(d+1)

, i = 1, · · · , d+1.

Also, it is easy to verify that the likelihood value decreases from
the center monotonically. That is, a center-outward rank can be
naturally given by the likelihood value.

2.2.2. Model Identification
Given point process observations, we will need to estimate the
parameter α of the Dirichlet model in Equation (2). We propose
to conduct the conventional Maximum Likelihood Estimate
(MLE) procedure. Assume we have observed N independent
realizations with d events, that is S = (S1, S2, · · · , SN), where
Sn = (sn,1, sn,2, · · · , sn,d). Then the log-likelihood function L(α)
is given as follows:

L(α) = log p̃(S|α) = log

N
∏

n=1

p(Sn|α)

= log

N
∏

n=1

Ŵ(
∑d+1

i=1 αi)
∏d+1

i=1 Ŵ(αi)

d+1
∏

i=1

(
sn,i − sn,i−1

T
)αi−1

= N(logŴ(

d+1
∑

i=1

αi)−
d+1
∑

i=1

logŴ(αi))

+
d+1
∑

i=1

(αi − 1)

N
∑

n=1

log(
sn,i − sn,i−1

T
).

We propose to use the Newton-Raphson (N-R) method to find
the maximum of L(α) [30]. In order to use the method, we need
to derive the gradient ∇L and Hessian matrix H with respect to
the parameter α. The gradient∇L = ( ∂L

∂α1
, · · · , ∂L

∂αd+1
) is obtained

by calculating the first-order derivatives:

∂L

∂αi
= N(ψ(

d+1
∑

i=1

αi)− ψ(αi))+
N

∑

n=1

log(
sn,i − sn,i−1

T
),

i = 1, · · · , d + 1,

where ψ(x) = Ŵ′(x)
Ŵ(x) is known as the digamma function. To get

the Hessian matrix H = ( ∂2L
∂αj∂αi

)d+1
j,i=1 ∈ R

(d+1)×(d+1), we need to

calculate the second-order derivatives:

∂2L

∂α2i
= N(ψ ′(

d+1
∑

i=1

αi)− ψ ′(αi)), i = 1, · · · , d + 1,

∂2L

∂αj∂αi
= Nψ ′(

d+1
∑

i=1

αi), j, i = 1, · · · , d + 1, j 6= i.

Note that for a large value of d, the computation of H−1 can
be very costly. To make the procedure more efficient, we can
rewrite the hessian matrix as H = Q + c11T , where Q =
diag(q1, · · · , qd+1) with qi = −Nψ ′(αi),.i = 1, · · · , d + 1, c =
Nψ ′(

∑d+1
i=1 αi), and 1 ∈ R

d+1 is a column vector with every entry

being 1. It is easy to see thatH−1 = Q−1− Q−111TQ−1

1/c+1TQ−11
. Therefore,

the parameter α can be updated using the following iteration:

αnew = αold − (Q−1 − Q−111TQ−1

1/c+ 1TQ−11
)∇L.

TheMLE estimate above is for a given number of events d. For
a point process, we need to estimate the Dirichlet parameters in
each dimension. In practice, we will set an upper bound D and
only make estimations for the cases with up to D events.

2.3. Dirichlet Mixture Models
We have proposed to use a Dirichlet model to represent the
likelihood of the IETs of a given point process realization.
However, the underlying distribution of the IETs of a point
process may be more complicated than a unimodal Dirichlet
distribution. In this section, we will propose to adopt a mixture
model to address this issue.
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FIGURE 2 | IETs of a binomial point process and contours of Dirichlet models. (A) IETs of simulated binomial point process with 2 events and contours of a fitted

single Dirichlet model. (B) Same as (A) except using a Dirichlet mixture model with 6 components.

2.3.1. Mixture of Dirichlet Distribution
We will at first use an example to illustrate the insufficiency of
Dirichlet model for complicated IET patterns. In Figure 2A, the
scatter plot is the point cloud from a binomial point process with
2 events (see simulation detail in Section 3). A single Dirichlet
model (shown with multiple contour lines) cannot properly
describe the multi-modal pattern. In Figure 2B, we adopt a
mixture of Dirichlet distributions, which apparently provides a
more appropriate characterization on the observed IETs.

The Dirichlet mixture model on the conditional distribution
of IETs is formally given as follows:

2.3.1.1. Dirichlet Mixture Model
For a point process s given |s| = d in time interval (0,T), let
s0 = 0, sd+1 = T, and the IETs u = (u1, u2, · · · , ud+1) =
(s1 − s0, s2 − s1, · · · , sd+1 − sd). The conditional distribution of
IETs is modeled using a Dirichlet mixture model:

p̃(s = (s1, · · · , sd) | |s| = d) =
K

∑

k=1

wk

∏d+1
i=1 Ŵ(αi,k)

Ŵ(
∑d+1

i=1 αi,k)

d+1
∏

i=1

(
ui
T
)αi,k−1

where K denotes the number of the mixture components, wk is
the weight parameter of kth component, α·,k = (α1,k, · · · ,αd+1,k)
are the parameters of the kth Dirichlet distribution, k = 1, · · · ,K.

In practice, we need to estimate parameters in a Dirichlet
mixture model for given IETs. To do so, we need to estimate
(1) the number of components K and (2) parameters {αi,k}
and {wk} in each component. Estimation of K is a classical
model selection problem. We propose to adopt a nonparametric
Dirichlet process to find an optimal component number. Once
this number is known, we will use an Expectation-Maximization
(EM) algorithm to estimate parameters {αi,k} and {wk}. These two
procedures are clearly given in the following subsections.

2.3.2. Model Selection via Dirichlet Process
Dirichlet Process [22] defines a prior distribution for themixture.
In this subsection, we propose to use a Monte-Carlo method to
estimate the optimal number of components in the mixture.

2.3.2.1. Prior
Assume the mixture of Dirichlet distributions in Section 2.3.1 has
a prior of Dirichlet Process with exponential base distribution
G0 = exp(λ) and a scalar precision parameter γ > 0 for the
components concentration. N observations X = {X1, · · · ,XN}
are given in the Dirichlet mixture model, where each observation
comes from one of the mixture components. Using the Dirichlet
process, we can write the prior information of the mixture
model as:

G ∼ DP(γ ,G0 = exp(λ))

(θi|G) ∼ G

Xi ∼ Dir(θi), (3)

where λ is a hyperparameter of the base distribution G0, Xi =
(xi1, · · · , xid) is the ith observation, θi = (α1,(i), · · · ,αd,(i)) is the
parameters of the component that the ith observation Xi belongs
to. Note that if θi = θj, then the ith and jth components are from
the same component.

To sample from the posterior distribution easily, we need to
introduce the equivalent view of the Dirichlet Process, known as
“Chinese Restaurant Process” [31]. Given the Dirichlet process
prior we described in Equations (3), the indicator variable follows
the Chinese Restaurant Process. That is

P(zi = j|Z−i, γ ) =
n−i
j

n− 1+ γ (4)

P(zi = new|Z−i, γ ) = γ

n− 1+ γ , (5)

where zi is the indicator variable corresponding to the ith

observation, Z−i = (z1, · · · , zi−1, zi+1, · · · , zN), and n−i
j is

the number of observations in (X1, · · · , Xi−1, Xi+1, · · · ,XN)
belonging to jth component.

2.3.2.2. Posterior of Indicator
Assume we fix the currently existing component parameters
2 = (θ1, . . . , θk). Given γ and observations X, the posterior
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probability of indicators can be written as:
For the existing components:

P(zi = j|Z−i,X,2) = P(zi = j|Z−i)

P(Xi|zi = j, θj)
P(Z−i,X−i,2)

P(Z−i,X,2)
. (6)

For the new component:

P(zi = new|Z−i,X,2) = P(zi = new|Z−i)

P(Xi|zi = new)
P(Z−i,X−i,2)

P(Z−i,X,2)
. (7)

Integrating over2, we get

P(zi = j|Z−i,X) = b ·
n−i
j

n− 1+ γ ·
∫

θj

Dir(Xi|θj)dH−i(θj)

(8)

P(zi = new|Z−i,X) = b · γ

n− 1+ γ ·
∫

θ

Dir(Xi|θ)dG0(θ),

(9)

whereH−i(θj) is the posterior distribution of θ based on the prior

G0 and all observations Xl ∈ X−i, zl = j, and b = P(Z−i ,X−i ,2)
P(Z−i ,X,2)

.

2.3.2.3. Non-conjugate Estimation
The integrals in Equations (8) and (9) can be integrated
analytically in a conjugate context. Dirichlet and Exponential
distributions, however, are not conjugate, and we need to
find another method to estimate the posterior distribution of
indicators Z = (z1, · · · , zn) [24]. In this article, we propose to
substitute 2 into Equations (6) and (7) to estimate the posterior
distribution of Z.

Then for Equation (6)

P(zi = j|Z−i,X,2) = b · P(zi = j|Z−i)P(Xi|zi = j, θj)

= b ·
n−i
j

n− 1+ γ · Dir(Xi|θj). (10)

When θj is available, it is straight forward to obtain the result in
Equation (10). For Equation (7)

P(zi = new|Z−i,X,2) = b · P(zi = new|Z−i)P(Xi|zi = new)

= b · γ

n− 1+ γ ·
∫

θ

Dir(Xi|θ)dG0(θ)

(11)

In Equation (11), the integral term is on one sample Xi.
Therefore, a Monte-Carlo method can be adopted. We will
generate M samples of θ from G0, denoted as {θi}Mi=1, and then
estimate the integral term as.

∫

θ

Dir(Xi|θ)dG0(θ) =
1

M

M
∑

i=1

Dir(Xi|θi). (12)

2.3.2.4. Maximum a Posteriori (MAP) for Estimating2
Next, we will use the MAP to estimate the new θj after each
iteration. The likelihood with the prior knowledge is

L(θj) = p(X|θj)p(θj) =
∏

i

Dir(Xi|θj)exp(θj)

=
nj
∏

i=1

(
Ŵ(

∑d
k=1 αj,k)

∏d
k=1 Ŵ(αj,k)

d
∏

k=1

x
αj,k−1

ik )

d
∏

k=1

λke
−λkαj,k .

Hence, the log-likelihood is

l(θj) = nj(logŴ(
d

∑

k=1

αj,k)−
d

∑

k=1

logŴ(αj,k)

+
d

∑

k=1

(αj,k − 1) log X̂k)−
d

∑

k=1

λkαj,k + constant, (13)

where {X1,X2, . . . ,Xnj} is a set of observed multinomial data in

component j, and log X̂k = 1
nj

∑

i log xik. Similar to Section 2.2.2,

we can use the Newton-Raphson’s method to find the maximum
of l(θ). The details are omitted here.

So far we have sampled Dirichlet Mixture Distributions from
the posterior DP iteratively. For each sample, we have a number
of components. Therefore, we obtain an empirical distribution of
number of components and an “optimal” number of components
for the given data can be taken as the mean, median, or mode of
the distribution thereafter. In practice, such distribution often has
a narrow range of optimal values. The MCMC algorithm is given
inAlgorithm 1 as follows, whereNumOfComponents denotes the
number of components for the given data.

2.3.3. Model Identification via EM Algorithm
Once an optimal number of events is estimated using the
Dirichlet process, we can estimate parameters in the Dirichlet
mixture model. This estimation can be effectively done with an
EM algorithm.

Let S = {s1, s2, · · · , sN} denote N observed realizations with d
events. Their equivalent representations using IETs are denoted
by U = {u1, · · · , uN} in simplex S

d ⊂ R
d+1. We will model

these IETs using a Dirichlet mixture model with K components.
The likelihood of all observations is given as

f (U | θ) =
N

∏

i=1

K
∑

k=1

wkfk(ui | α·,k), (14)

where θ = ({wk,α·,k}Kk=1
) denote all parameters with wk being

the weight coefficient and α·,k = (α0,k, · · · ,αd,k) in the density
of Dirichlet distribution fk, k = 1, · · · ,K. We use Z =
{Z1,Z2, · · · ,ZN} to denote the missing labels of all observations,
where Zi = (zi,1, · · · , zi,K) with

zi,k =
{

1 if ui belongs to the kth component

0 otherwise.
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Algorithm 1 Dirichlet Process to Estimate the Number of
Components.

Require: N realizations from a point process with D events
S1, · · · , SN and their corresponding IETs X1, · · · ,XN ,
hyperparameters γ ∈ R+ for Dirichlet process and λ ∈ R

D
+

for base distribution exp(λ)
while Iter ≤ maxIter do
Initialize component parameters2, indicators Z
for i = 1, · · · ,N do

Remove the ith observation from corresponding
component θzi
if No observation in component θzi then
Remove component θzi

else

Update the component parameters θzi according toMAP
in Section 2.3.2.4

end if

Calculate the posterior distribution according to Equations
(10) and (11)
Re-sample zi to znewi and put this observation to the
corresponding component θznewi

.
Update the component parameters θznewi

according toMAP
in Section 2.3.2.4

end for

Calculate the number of components
NumOfComponents(Iter) after one loop is over.

end while

Output NumOfComponents

2.3.3.1. E-Step
Our goal is to maximize f (U | θ). Based on conditional
representation f (U,Z | θ) = f (U | θ)f (Z | U, θ), we get

log f (U | θ) = log f (U,Z | θ)− log f (Z | U, θ).

Taking expectation on both side with respect to the density
function f (Z | U, θ (m)) for estimate θ (m) after m-th iteration,
we have

E[log f (U | θ)] = Q(θ | θ (m),U)−H(θ | θ (m),U),

where Q(θ | θ (m),U) = E[log f (U,Z | θ) | θ (m),U] and
H(θ | θ (m),U) = E[log f (Z | U, θ) | θ (m),U].

According to (14), the Q function can be written as.

Q(θ | θ (m),U) = E[log f (U,Z | θ) | θ (m),U]

=
N

∑

i=1

(

K
∑

k=1

[logwk + logŴ(
D

∑

d=1

αd,k)

−
D

∑

d=1

logŴ(αd,k)

+
D

∑

d=1

(αd,k − 1)logui,d]P(k | ui, θ (m))).(15)

2.3.3.2.M-Step
We will update {αd,k} to maximize Q function by solving

∂Q

∂αd,k
=

N
∑

i=1

(
Ŵ′(

∑

d αd,k)

Ŵ(
∑

d αd,k)
−Ŵ

′(αd,k)

Ŵ(αd,k)
+logui,d)P(k | ui, θ (m)) = 0

(16)
with the Newton-Raphson method. Update {wk} by solving

∂g

∂wk
=

N
∑

i=1

P(k | ui, θ (m))

wk
+ λ = 0, (17)

where

g = Q+ λ(
K

∑

k=1

wk − 1)

and λ is the Lagrange multiplier.
In summary, the EM-algorithm is given in Algorithm 2

as follows.

2.3.4. Multiple Mixture Models
When the number of events, d, is given in the point process,
we have proposed a combination of Dirichlet process and EM
algorithm to estimate the parameters in the model. However,
point process data often have observations with various numbers
of events, and we need to estimate a model for each case.
In practice, we can set an upper bound D, and only estimate
models with number of events up to D. To make the estimation
procedure feasible, we will only use Dirichlet process to estimate
the number of mixture components for d = D, and then use the
same component number for d = 1, · · · ,D− 1. To identify these
mixture models, the EM algorithm will be used for each value of
d = 1, · · · ,D. We use wk : d to denote the weight parameter and
α·,k : d to denote the Dirichlet parameters for kth component in d
dimensional cases. The algorithm is shown below.

Algorithm 2 Parameter Estimation using the EM Algorithm.

Require: N realizations from a Poisson process with d events
S1, · · · , SN , appropriate number of components K from DP in
Section 2.3.2
Initialize Iter = 0, parameters w = (w1, · · · ,wK) and α =
(α·,1, · · · ,α·,K), wnew and αnew which are different with w and
α

while l2− norm(α,αnew) > threshold and Iter ≤ maxIter do
α = αnew

w = wnew

for k = 1, · · · ,K do

update αnew·,k and wnew
k according to the solutions in

Equations (16) and (17), respectively.
end for

end while

Output αnew and wnew
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Algorithm 3 Estimate Parameters for Multiple Dirichlet Mixture
Models.
Require: N realizations from a point process with d events

Sd1 , · · · , SdN for each d = 1, · · · ,D, with the number of
componentsK given by Dirichlet process in Section 2.3.2 when
d = D
for d = 1, · · · ,D do

Initialize Iter = 0, parameters w: d = (w1 : d, · · · ,wK : d) and
α: d = (α·,1 : d, · · · ,α·,K : d),w

new
: d and αnew

: d which are different
with w: d and α: d
while ‖α: d − αnew: d ‖ > threshold and Iter ≤ maxIter do
α: d = αnew

: d
w: d = wnew

: d
for k = 1, · · · ,K do

update αnew·,k : d and wnew
k : d according to the solutions in

Equations (16) and (17), respectively.
end for

end while

Output αnew
: d and wnew

: d
end for

2.4. Alternative Mixture Model
In Subsection 2.3, we have proposed a DirichletMixtureModel to
describe the conditional distribution of IETs of a point process.
Dirichlet distribution has the same support as IETs so that it is
suitable for the IET modeling. However, the Dirichlet process
and EM algorithm for the mixture Dirichlet distributions have
no closed-form updates. We choose to rely on Monte Carlo
or gradient methods to approximate the solutions, which are
computationally expensive. In this subsection, we introduce
an alternative approach based on compositional data analysis.
Firstly, we apply the bijective isometric logratio transformation

(ilr) [26] to map the IETs from D-dimensional simplex S
D

to R
D−1. Then a Gaussian Mixture model can be utilized to

characterize the distribution of transformed IETs in the Euclidean
space and we can take advantages of the conjugate prior with
closed-form solutions.

2.4.1. Isometric Logratio Transformation and

Gaussian Mixture Model
Compositional data is fundamentally different from
unconstrained multivariate data that it has a constant sum
constraint [27]. The bijective logratio transformation methods
such as centered logratio transformation (clr) and isometric
logratio transformation (ilr) [32] have been successfully used to
deal with such type of data. They transform the original data
to an unconstrained space, making it possible to use various
conventional multivariate models on the transformed data.
The isometric logratio transformation is a preferred version
of such transformation with the apparent advantages such as
distance and angle preserving and full rank covariance. Given
X = (x1, x2, · · · , xD) ∈ S

D, we can denote the centered logratio
transformation as:

clr(X) = (ln
x1
g(X)

, ln
x2
g(X)

, · · · , ln xD
g(X)

),

where g(X) = (
∏D

i=1 xi)
1/D is the component-wise geometric

mean. Together with an appropriate clr-matrix of the
orthonormal basis, 9 ∈ R

D×(D−1), the isometric logratio
transformation can be expressed as:

ilr(X) = clr(X) ·9 ′. (18)

Gram-Schmidt techniques [26] can be utilized to obtain an
appropriate orthonormal basis of the simplex easily. The entries
of9 can be expressed as:

9i,j =































√

1

(D− i)(D− i+ 1)
, j ≤ D− i,

−
√

D− i

D− i+ 1
, j = D− i+ 1,

0, otherwise.

(19)

Assuming we have N observations and their corresponding IETs
U = {u1, · · · , uN} in simplex S

d, the ilr transformation can
help remove the constant-sum constraint of U by mapping
it to an unconstrained Euclidean space R

d−1, i.e., ilr(U) =
{ilr(ui)}Ni=1 ⊂ R

d−1. Because of its isometric property, the
clustering components will be preserved (See one example in
Figure 3). This makes the commonly used Gaussian Mixture
model appropriate for ilr(U).

After removing the constant sum restriction, the transformed
IET vector ilr(U) is in an unconstrained Euclidean space so that
the classical multivariate Gaussian Mixture model (GMM) can
be used directly. For a given process, we firstly conduct the ilr
transformation, and then fit a GMM on the transformed data.
This modeling procedure is given as follows:

2.4.1.1. Gaussian Mixture Model
For a point process s given |s| = d in time interval [0,T), let
s0 = 0, sd+1 = T, and the IET vector u = (u1, u2, · · · , ud+1) =
(s1 − s0, s2 − s1, · · · , sd+1 − sd). Using the ilr transformation, we
have u∗ = ilr(u) ∈ R

d−1, the conditional distribution of point
process is modeled using a Gaussian mixture model on u∗:

p̃(s = (s1, · · · , sn) | |s| = n)

=
K

∑

k=1

wk
1

(2π)(d−1)/2|6k|(1/2)

exp(−1

2
(u∗ − µk)

T6−1
k (u∗ − µk))

where K denotes the number of the mixture components, wk

is the weight parameter of kth component, and µk ∈ R
d−1

and 6k ∈ R
(d−1)×(d−1) are the mean and covariance of the kth

Gaussian distribution, respectively, k = 1, · · · ,K.
For a given number of events d, we still use the Dirichlet

Process to conduct the model selection and EM-algorithm to
estimate the mixture model parameters. For observations with
various number of events, we follow the same procedure in
Algorithm 3 to identify Gaussian mixture models for each
dimension. The details are given in the following subsections.
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FIGURE 3 | 2-event IETs on simplex and transformed IETs on Euclidean space. (A) Scatter plot for the original IETs on the 3-D simplex. (B) Transformed IETs after ilr

transformation in the 2-D Euclidean space.

2.4.2. Dirichlet Process on Gaussian Mixture Model
Dirichlet process Gaussian mixture model (DPGMM) [33] is
a classical Dirichlet process mixture model. We can naturally
choose the conjugate priors for the mean and precision matrix
(inverse of covariance matrix) to get a closed-form posterior. For
a Gaussian distribution N(µi,Ri) with mean µi and precision Ri,
we assume the joint distribution of (µi,Ri) has a Normal-Wishart
distribution, denoted as

(µi,Ri) ∼ NW(κ ,m, ν,U),

wherem and κRi are the mean and precision of the Normal prior;
ν and U are the parameters of the Wishart prior. The DP can be
written as:

G ∼ DP(γ ,NW(κ0,m0, ν0,U0))

(θi|G) ∼ G

Xi ∼ N(θi), (20)

where κ0,m0, ν0,U0 are four hyperparameters of the base
distribution G0, Xi = (xi1, · · · , xid) is the ith observation, θi =
(µ·,(i),R(i)) is the mean and precision of the component that the

ith observation Xi belongs to.
With this conjugate prior base distribution, the integral

parts in Equations (8) and (9) can be calculated analytically.
Meanwhile, the posterior distribution of component parameters
2 will also be a Normal-Wishart distribution and the parameters
κ ,m, ν,U | X can be expressed in closed-forms [28]. Instead of
calculating the MAP estimation of 2, we can sample from the
posterior directly. The algorithm is summarized as follows:

In Algorithm 4, we can take advantage of the closed-form
solutions to avoid estimating the integral in Equations (10) and
(11) without using Monte Carlo method or Newton-Raphson
numerical approximation. It can lead to more accurate and
efficient sampling procedure for the posterior distribution.

2.4.3. EM Algorithm on Gaussian Mixture Model
Gaussian Mixture Model (GMM) is one of the most classical
examples for model estimation by the EM algorithm.

Algorithm 4 Dirichlet Process Gaussian Mixture Model
(DPGMM).

Require: N realizations from a point process with D events
S1, · · · , SN and their corresponding IETs X1, · · · ,XN ,
hyperparameters γ ∈ R+ for Dirichlet process and
κ0,m0, ν0,U0 for base distribution NW(κ0,m0, ν0,U0)

while Iter ≤ maxIter do
Initialize component parameters2, indicators Z
for i = 1, · · · ,N do

Remove the ith observation from corresponding
component θzi
if No observation in component θzi then
Remove component θzi

else

Update the component parameters θzi according to the
closed-form solution in Murphy [28]

end if

Calculate the posterior distribution of zi according to the
closed-form solution of Equations (10) and (11)
Re-sample zi to znewi and put this observation to the
corresponding component θznewi

.
Update the component parameters θznewi

according to the
closed-form solution in Murphy [28]

end for

Calculate the number of components
NumOfComponents(Iter) after one loop is done.

end while

Output NumOfComponents

The closed-form update is well studied in many articles
[29]. We will only list the update equations and omit
the details.

2.4.3.1. E-Step
For observation u∗i , the posterior probability for component k is
given by:
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FIGURE 4 | Single models on HPP. (A) Contour of single Dirichlet model for 2-event realizations. (B) Center-outward rank given by the single Dirichlet model for

2-event realizations. (C,D) Same as (A,B) except for the Gaussian model.

zi,k = P(k | u∗i ,µk,6k) =
wkN(u∗i | µk,6k)

∑K
k=1 wkN(u∗i | µk,6k)

2.4.3.2. M-Step
The updated parameters wnew

k , µnew
k , and6new

k are given by:

wnew
k = 1

N

N
∑

i=1

zi,k

µnew
k =

∑N
i=1 zi,ku

∗
i

∑N
i=1 zi,k

6new
k =

∑N
i=1 zi,k(u

∗
i − µnew

k )(u∗i − µnew
k )T

∑N
i=1 zi,k

(21)

We point out that although the closed-form solutions for GMM
can make Dirichlet Process and EM algorithm more efficient
to calculate, the second-order covariance matrices need to be
estimated. This may not be robust when sample size is small.
In this study, we will use both DMM on the original IETs and
GMM on the transformed IETs, and compare their performance
on simulations and real data in the next section.

3. EXPERIMENTAL STUDIES

In this section, we will at first show a simulation study on a
homogeneous Poisson process (HPP) to illustrate the center-
outward ranking of our models. We will then examine the

likelihood contours and classification performances to show the
advantage of the mixture models on simulated inhomogeneous
Poisson processes (IPPs). Finally, both Dirichlet Mixture model
and Gaussian Mixture model will be evaluated on a real
experimental dataset.

3.1. Example 1: Homogeneous Poisson
Process (HPP)
We set the upper bound of number of events to be D =
10. For every dimension d ∈ {1, 2, · · · , 10}, 1,000 realizations
are generated from an HPP. Once we get enough data for
all dimensions, Gaussian models and Dirichlet models can be
fitted, respectively. In this HPP example, we fit single Dirichlet
model and Gaussian model by maximum likelihood estimation
(MLE) method.

Figure 4A shows the single Dirichlet model fitted by 1,000
2-event realizations from the HPP. It is clear that the points
near the center of the simplex have a higher likelihood.
Figure 4B illustrate the corresponding center-outward ranking
performance for the top 5 and bottom 5 processes using the
single Dirichlet model. It is clear that realizations with evenly
distributed events tend to have higher ranks. Similarly, the
single Gaussian model likelihood contour and ranking pattern
are shown in Figures 4C,D, respectively. Here we fit the single
Gaussian models on the transformed IETs in Euclidean space
at first, and then transform the IETs and contours back to the
simplex space.
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FIGURE 5 | Center-outward Rank given by the models. (A) Center-outward rank given by the single Dirichlet model for 5-event realizations. (B) Same as (A) except

for the Gaussian model.

FIGURE 6 | Intensities of four inhomogeneous Poisson processes. (A) The intensity of the first IPP. (B–D) Same as (A) except for the other three processes,

respectively.

To further evaluate the ranking performance, 1,000
realizations with 5 events are tested on the well-trained
Dirichlet and Gaussian model and sorted by the likelihood.
Figure 5 shows the center-outward ranking of these realizations.
We can see the ranking results based on Dirichlet model and
Gaussian model are very similar in the five top-ranked and the
five bottom-ranked realizations. This indicates both methods
produce similar ranks for “central” realizations, as well as similar
ranks for extreme outliers.

3.2. Example 2: Inhomogeneous Poisson
Processes (IPPs)
We generate N = 1, 000 realizations from each of four IPPs on
[0, 1] with intensity functions given below:

λipp1 = 5 · 1√
2π · 0.1

· (exp(−1

2
(
t − 0.3

0.1
)2)

λipp2 = 5 · 1√
2π · 0.1

· (exp(−1

2
(
t − 0.7

0.1
)2)

+ exp(−1

2
(
t − 0.66

0.05
)2)+ exp(−1

2
(
t − 0.9

0.05
)2))

λipp3 = 2 · 1√
2π · 0.05

· (exp(−1

2
(
t − 0.1

0.05
)2)

+ exp(−1

2
(
t − 0.5

0.05
)2)

+ exp(−1

2
(
t − 0.9

0.05
)2))

λipp4 = 1.5 · 1√
2π · 0.05

· (exp(−1

2
(
t − 0.1

0.05
)2)

+ exp(−1

2
(
t − 0.33

0.05
)2)

+ exp(−1

2
(
t − 0.66

0.05
)2)+ exp(−1

2
(
t − 0.9

0.05
)2)),

where the first two intensity functions are uni-modal and the last
two are multi-modal. Figure 6 shows all intensity functions.

3.2.1. Uni-Modal Cases
For processes IPP1 and IPP2, we still use single models to
describe the IETs’ distribution and use MLE method to identify
the models. Their IETs of 2-events realizations are shown in
Figure 7. It is clear to see that in each process, the IETs are
clustering together to one class on the 3-D simplex S3. Therefore,
it is natural to use a Dirichlet distribution to model the likelihood
of IETs. Instead of modeling the intensity of each process, our
models describe the distribution of the IETs.

Figure 8 illustrates the ilr-transformation-based approach to
model the IETs. Figures 8A,C show the ilr-transformed IETs with
the fitted Gaussian contours in these two processes, respectively.
Panels (b) and (d) show the corresponding original IETs and
the contours transformed back to 3-D simplex from the 2-D
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FIGURE 7 | Uni-modal IETs of 2-event realizations for IPP1 and IPP2 and single Dirichlet models. (A) 1,000 2-event realizations of IPP1 and the fitted single Dirichlet

model with contours. (B) Same as (A) except for IPP2.

FIGURE 8 | Uni-modal IETs of 2-event realizations for IPP1 and IPP2 and single Gaussian models: (A) Ilr-transformed realizations of IPP1 given in Figure 7A and the

fitted Gaussian contours. (B) Original realizations of IPP1 and ilr-inverse-transformed contours from the Gaussian contours in (A). (C,D) Same as (A,B) except for IPP2.

Gaussian contours. The shapes of the contours look different
from the single Dirichlet models in Figure 7, whereas both
methods can properly represent single cluster patterns in the
given IETs.

3.2.2. Multi-Modal Cases
For processes IPP3 and IPP4, we model the IETs using mixture
models. To fit the models, firstly we do the Dirichlet Process

model selection based on Algorithms 1 and 4 to get the optimal
number of components. Then, the mixture models are identified
by the EMmethod according to Algorithm 3.

Figures 6C,D are two IPPs with multi-modal intensity
functions. In these cases, we use Algorithm 3 to fit Gaussian
mixture and Dirichlet mixture models on each dimension.
Dirichlet mixture contours with 2-event cases are shown
in Figure 9. Similarly to Figures 8B,D, these 2-event
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realizations with the ilr-inverse-transformed contours are
shown in Figure 10.

It is easy to see from Figures 9, 10 that these IETs have a
clear multi-modal distribution on the simplex, and therefore the
single uni-modal distribution cannot describe the distribution
appropriately. We adopt the Dirichlet and Gaussian mixture
models to characterize the multi-modality. Figure 9 shows that
the contours of the Dirichlet mixture model can properly fit
the multi-modal pattern. As a comparison, Figure 10 shows
the contours of the Gaussian mixture model, which also has
the ability to describe the multi-modal pattern, but it is more
sensitive to the number of points in each cluster. We can see the
contours’ shapes fit the data well, whereas the value of likelihoods
is very sensitive to the density and location of the points. The
clusters at the corner of the triangle tend to have lower likelihood
than those at the center. This may be due to the ilr transformation
which bijectively maps the cluster points near boundaries of the
simplex to sparse points in the unbounded Euclidean space and a
Gaussianmodel on these sparse points can be sensitive to outliers.

In order to demonstrate the advantage of the mixture
models, we conduct a classification comparison by using all
four models (single Dirichlet, single Gaussian, Dirichlet mixture,
and Gaussian mixture). Another 20,000 realizations from IPP3

and IPP4 were generated respectively as the test set. For each
realization, we feed it to the four models we proposed. In each

FIGURE 11 | Classification accuracy for each method with respect to the

number of events.

FIGURE 9 | Dirichlet mixture models on IPPs. (A) 1,000 2-event realizations of IPP3 and the density contours by using the Dirichlet mixture model. (B) Same as (A)

except for IPP4.

FIGURE 10 | Gaussian mixture models on IPPs: (A) 1,000 2-event realizations from the original 1,000 realizations of IPP3, and the density contours by using the

Gaussian mixture model. (B) The same as (A) except for IPP4.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 April 2022 | Volume 8 | Article 852314

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chen et al. Rank-Based Models for Point Processes

case, the label with higher likelihood will be the predicted label of
this realization. The classification result of these models is shown
in Figure 11. We can see the two mixture models have much
higher accuracies for any given number of events (varying from
1 to 10) than the two single models. This result illustrates that
the mixture models do have a better representation for data with
multi-modal structures.

3.3. Real Data
In additional to the simulation examples shown above, we will
apply these new models on a real experimental recording. This
recording was previously used and clearly described in Wu
and Srivastava [34]. Briefly, a juvenile male macaque monkey
was trained to perform a closed Squared-Path (SP) task by
moving a cursor to targets via contralateral arm movements
in the horizontal plane. In each trial the subject reached a

sequence of five targets consists of the four corners of the square
counterclockwise with the first and last one overlapped. If we
label the upper left corner as A, lower left as B, lower right as
C, and upper right as D, then there will be four different paths,
namely, Path 1: ABCDA, Path 2: BCDAB, Path 3: CDABC, and
Path 4: DABCD. During the movement, silicon microelectrode
arrays were implanted in the arm area of primary motor cortex
in the monkey. Signals were filtered, amplified and recorded
digitally and single units were manually extracted. There are 60
trials for each path with time length 5–6 s. To fit the models, all
these 240 trials were normalized to 5 s. Figure 12 shows 10 trials
of spike trains from each path.

For the 60 trials in each path, we randomly select 45 trials as
the training data and use the other 15 trials as the test data. The
number of events of the 240 trials varies between 12 to 61. It is not
robust to train a mixture model for each number of events with

FIGURE 12 | Examples of spike trains. 10 examples of spike trains generated from each path. The four colors (blue, red, green and cyan) indicate spiking activity

during hand movement in Paths 1, 2, 3, and 4, (A–D), respectively. Each vertical line represents one event. Each row represents one trial.

FIGURE 13 | Confusion matrices in 60 testing trials (15 trials for each path). (A) The confusion matrix of the Dirichlet mixture model. (B) The confusion matrix of the

Gaussian mixture model.
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such small samples. Therefore, for each trial in the training data,
we resample 10 events randomly and use this 10-event realization
as one training sample. 10 resampled realizations are randomly
generated from each training trial so that we have 45 × 10 =
450 training samples for each path, which are sufficient for the
training purpose in this study.

In the training stage, for each path, 450 samples with 10 events
described above are used to fit a Dirichlet mixture model and a
Gaussian mixture model, respectively. The classification on the
test stage is also done for these two models. In the Dirichlet
case, we sample 500 10-event realizations for each trial and
then fit them to all four Dirichlet mixture models. For each
realization, we have 4 likelihoods representing Paths 1, 2, 3, and
4, respectively, and the one with the largest likelihood will be the
label of this realization. As a result, 500 labels can be calculated
for each trial and the mode will be used as the final label of this
trial. The same procedure also applies to the Gaussian case.

Figure 13 are the confusion matrices of Dirichlet and
Gaussian mixture models to summarize the classification result.
We can see that both methods can identify the trials from
Paths 1, 3 and 4 almost perfectly, but perform a little bit
worse on identifying trials from Path 2. The overall accuracy
of Dirichlet mixture model is 88.33% and of Gaussian mixture
model is 86.67%. This result is comparable with the state-of-the-
art nearest neighbor method [35].

4. SUMMARY

Instead of estimating the conditional intensity function, we have
proposed an alternative approach to model the point process
using two factors: (1) the number of events in the process,
and (2) the conditional distribution of these events given the
number. Our study focuses on the conditional distribution and
two approaches are given in this study. One approach adopts

Dirichlet distribution to describe the conditional distribution
by modeling the equivalent inter-event time representation.
To fit more complicated multi-modal distribution of IETs,
we extend the notion of rank-based Dirichlet model to rank-
based Dirichlet mixture model. The other approach is based on
Gaussian model or Gaussian mixture models on the transformed
IETs using isometric logratio transformation. This is to avoid
the computational inefficiency in the Dirichlet method. In
the model fitting stage, we have proposed to use Dirichlet
processes to identify the number of components in the mixture
models and well-known Expectation-Maximization algorithms
for parameter estimations.

This novel, data-driven, rank-based modeling framework can
naturally provide a center-outward rank to the realizations, and
it is easy to be fitted given enough data. For practical application,
realizations from Poisson processes and real experimental
recording of spike trains are used to investigate the center-
outward ranking and classification performances. Inmulti-modal
cases, it shows that the mixture models offer a more appropriate
description and better classification performances than single
models. Further applications such as outlier detection will be
studied in the future. In addition, we will explore other modeling
approaches than the Gaussian mixtures on the transformed IETs.
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