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Time warping function provides a mathematical representation to measure phase variability in 
functional data. Recent studies have developed various approaches to estimate optimal warping 
between functions. However, a principled, linear, generative representation on time warping 
functions is still under-explored. This is highly challenging because the warping functions are 
non-linear in the conventional 𝕃2 space. To address this problem, a new linear warping space 
is defined and a stochastic process representation is proposed to characterize time warping 
functions. The key is to define an inner-product structure on the time warping space, followed 
by a transformation which maps the warping functions into a sub-space of the 𝕃2 space. With 
certain constraints on the warping functions, this transformation is an isometric isomorphism. In 
the transformed space, the 𝕃2 basis in the Hilbert space is adopted for representation, which can 
be easily utilized to generate time warping functions by using different types of stochastic process. 
The effectiveness of this representation is demonstrated through its use as a new penalty in the 
penalized function registration, accompanied by an efficient gradient method to minimize the cost 
function. The new penalized method is illustrated through simulations that properly characterize 
nonuniform and correlated constraints in the time domain. Furthermore, this representation is 
utilized to develop a boxplot for warping functions, which can estimate templates and identify 
warping outliers. Finally, this representation is applied to a Covid-19 dataset to construct boxplots 
and identify states with outlying growth patterns.

1. Introduction

Temporal phase variability has been a central topic in the field of functional data analysis. In function registration or alignment, 
the goal is often to separate phase and amplitude variabilities, where the phase variation is represented using a time warping 
function. In many studies, it is critically important to find the aligned functions, because warping is considered as a nuisance 
variable in the measurement process, and its variability needs to be removed (Ramsay and Silverman, 2006). However, in other 
cases, phase is considered an essential and critical feature in the data (Marron et al., 2015). For either purpose, one needs to 
estimate optimal time warpings to align functional observations properly. A common space of warping functions is defined as 
Γ = {𝛾 ∶ [0, 1] → [0, 1]|𝛾(0) = 0, 𝛾(1) = 1, 0 < 𝛾̇(𝑡) <∞} (𝛾̇ denotes the derivative of 𝛾) (Srivastava et al., 2011), which is a nonlinear 
space under the conventional 𝕃2 metric. Over the past two-to-three decades, various approaches have been developed for robust and 
efficient estimations. Early approaches formulated a least-square problem by representing warping function with a linear combination 
of B-spline basis functions, and the warping can be obtained by estimating the corresponding coefficients (Ramsay and Li, 1998; 
Gervini and Gasser, 2004; James, 2007; Eilers, 2004). Recent approaches conducted registration by minimizing the Fisher-Rao metric 
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(Srivastava et al., 2011; Wu and Srivastava, 2014), or resampling with Bayesian registration (Cheng et al., 2014, 2016; Kurtek, 2017; 
Lu et al., 2017). In particular, there have been attempts to analyze the phase variations for functional regression (Hadjipantelis et 
al., 2014; Gervini, 2015), classification (Tucker et al., 2013) and functional PCA (Lee and Jung, 2016; Happ et al., 2019).

We point out that most of these studies focused on estimating optimal warping function for alignment, but not building a 
probabilistic model on it. Studies in Bayesian registration have examined statistical models on time warping, whereas the methods 
mainly focus on the simplified Dirichlet distribution (Cheng et al., 2016) or Gaussian process in the tangent space of the nonlinear 
Hilbert unit sphere (Kurtek, 2017; Lu et al., 2017). Because of this non-linearity, the modeling of time warping is still very challenging 
in the field. To explore the benefits in a linear, inner product space, we will at first define linear and inner-product operations in the 
warping functions. Our goal is to build an isometric isomorphism to transform the warping space to an 𝕃2 sub-space and then adopt 
stochastic process such as Gaussian process to represent the transformed functions.

To achieve this goal, we at first use the fact that a warping function in Γ can be represented as a probability density function by 
simply taking its derivative. In addition, it is well known that there exists an isometric isomorphism between the density space and 
a sub-space in 𝕃2 via the Centered Logratio transformation in the notion of Bayes Hilbert Spaces (Egozcue et al., 2006). Based on 
these results, we propose to represent the time warping function in three steps: 1) transform warping function to density function, 
2) transform density function to 𝕃2 sub-space, and 3) develop a stochastic process model in the 𝕃2 sub-space. A similar idea was 
explored in (Happ et al., 2019), where the focus was on the functional principal component analysis (fPCA) and joint-modeling phase 
and amplitude components. Our proposed representation adopts this framework, whereas our goal is to build a principled stochastic 
process on time warping functions.

Our representation provides a linear, inner-product system specifically on the time warping functions. It has the following four 
apparent features: Firstly, it has a principled theoretical foundation presented in an explicitly generative form (Egozcue et al., 
2006), allowing for the straightforward sampling of various time warping functions using pre-specified or data-driven (fPCA) basis 
elements (Happ et al., 2019). Secondly, the proposed representation can be utilized as a new penalty in the penalized function 
registration. Thirdly, the proposed representation can be employed to construct functional bagplots for warping functions, facilitating 
the identification of outliers. Fourthly, we can conduct other statistical analyses such as ANOVA or regressions on the original data 
by building one-to-one mapping from the time warping space to a conventional 𝕃2 space.

The rest of this manuscript is organized as follows: In Section 2, we at first define a space that contains only warping functions 
with bounded derivative and show it is isometrically isomorphic to an inner-product space by applying the Centered Logratio 
transformation to the derivative of the warping function. We then extend the inner-product space to a Hilbert space so that we 
can build a stochastic-process-based representation with bounded Hilbert basis functions. In addition, we describe how to estimate 
a model from observations. In Section 3, we present a new approach for penalized function registration with a new penalty by 
using our representation, and illustrate the method with simulations. Based on the new representation, in Section 4, we propose to 
construct a new boxplot for warping functions that can identify the shape outliers and then compare with the-state-of-art methods. A 
real-world application is given in Section 5. Finally, we summarize our work in Section 6. All mathematical details, as well as extra 
data analyses and illustrations, are given in the appendices. The programming scripts are deposited at a public repository (https://

github .com /YMa2019 /warping).

2. Methods

2.1. Warping functions with bounded derivatives

Time warping functions have been studied extensively in the literature, and a common space for all warpings in a finite domain 
[0, 1] is defined as

Γ = {𝛾 ∶ [0,1]→ [0,1]|𝛾(0) = 0, 𝛾(1) = 1,0 < 𝛾̇(𝑡) <∞}. (1)

A simple function 𝛾(𝑡) = 𝑡𝛼, 𝛼 > 0, is often used as a time warping example. See Fig. 1(a) for a few example curves. This paper aims 
to provide a stochastic-process-based representation on those warping functions. To make the mathematical representation feasible, 
we need to provide certain basic assumptions on the process. For example, processes with well-defined mean and covariance are 
referred to as second-order processes (Hsing and Eubank, 2015). Therefore, we often assume the process is second-order (such as 
a Gaussian process) so that the standard covariance-based methods can be adopted. However, 𝛾̇ in Equation (1) is simply positive 
without any other constraints, which makes it challenging to develop an appropriate model.

One simple and effective solution is to provide a lower and an upper bound on the derivative function, and this can lead to finite 
integrations such as the 𝕃𝑝 norms. That is, we can study time warping functions in the following domain:

Γ1 = {𝛾 ∶ [0,1]→ [0,1]|𝛾(0) = 0, 𝛾(1) = 1,0 < 𝑚𝛾 < 𝛾̇(𝑡) <𝑀𝛾 <∞}. (2)

In this new domain the two bounds 𝑚𝛾 and 𝑀𝛾 vary with respect to the function 𝛾 . One typical example in Γ1 is 𝛾(𝑡) = 𝑒𝑎𝑡−1
𝑒𝑎−1 , with 

𝑎 ≠ 0. A few example curves of this type of warping is given in Fig. 1(b). We point out that 𝛾(𝑡) = 𝑡𝛼 is not in Γ1. Note that the 
derivative of warping function 𝛾̇ is essentially a probability density function on [0, 1], and Γ1 is a group with function composition. 
Motivated by the Centered Logratio (CLR) transformation between a density space and the 𝕃2 space (Leonard, 1978; Egozcue et al., 
2006; Menafoglio and Hron, 2014; Menafoglio et al., 2016), we aim to build an isometric isomorphism to transform Γ1 to a proper 
2

𝕃2 subspace. At first, we need to build an inner-product structure on Γ1.

https://github.com/YMa2019/warping
https://github.com/YMa2019/warping
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Fig. 1. Simulations of 50 warping functions using two typical methods, respectively. (a) 𝛾𝑖(𝑡) = 𝑡𝛼𝑖 with 𝛼𝑖 ∼ Γ(5, 0.2), i.e., Gamma distribution with mean 1 and 
variance 0.2. (b) 𝛾𝑖(𝑡) = 𝑒𝑎𝑖 𝑡−1

𝑒𝑎𝑖 −1
with 𝑎𝑖 ∼𝑁(0, 4), i.e. normal distribution with mean 0 and variance 4.

It is apparent that Γ1 has constraints and is not even a vector space under the conventional 𝕃2 metric. In this paper, we propose 
to define perturbation, power, and inner-product operations to make Γ1 an inner-product space. For 𝑓, 𝑔 ∈ Γ1 and 𝛼 ∈ ℝ, the 
perturbation with operator ⊕Γ ∶ Γ1 × Γ1 → Γ1 is given by

[𝑓 ⊕Γ 𝑔](𝑡) =
∫ 𝑡

0
̇𝑓 (𝑠)𝑔̇(𝑠)𝑑𝑠

∫ 1
0

̇𝑓 (𝜏)𝑔̇(𝜏)𝑑𝜏
.

The power operation with operator ⊙Γ ∶ℝ × Γ1 → Γ1 is given by:

[𝛼 ⊙Γ 𝑓 ](𝑡) =
∫ 𝑡

0
̇𝑓 𝛼(𝑠)𝑑𝑠

∫ 1
0

̇𝑓 𝛼(𝜏)𝑑𝜏
.

In addition, the inner product is defined as the functional ⟨⋅, ⋅⟩Γ ∶ Γ1 × Γ1 →ℝ in the following form:

⟨𝑓, 𝑔⟩Γ = 1

∫
0

log( ̇𝑓 (𝑡)) log(𝑔̇(𝑡))𝑑𝑡−

1

∫
0

log( ̇𝑓 (𝑠))𝑑𝑠

1

∫
0

log(𝑔̇(𝑡))𝑑𝑡. (3)

With the inner-product given above, the associated norm and metric distance can be easily defined. An illustrative example of the 
concepts of warping norm and inner-product is presented in Appendix A. Based on the CLR transformation result in (Egozcue et al., 
2006), we select a 𝕃2 subspace under the conventional 𝕃2 norm in the following form:

𝐻(0,1) =
{
ℎ ∈ 𝕃2([0,1])| 1

∫
0

ℎ(𝑡)𝑑𝑡 = 0,−∞ <𝑚ℎ < ℎ(𝑡) <𝑀ℎ <∞
}
. (4)

It is easy to see that 𝐻(0, 1) is a subspace of 𝕃2([0, 1]). The main result between Γ1 and 𝐻(0, 1) is given in the following theorem:

Theorem 2.1. Given the mapping 𝜓𝐵 ∶ Γ1 →𝐻(0, 1):

ℎ(𝑡) = 𝜓𝐵(𝛾)(𝑡) = log(𝛾̇(𝑡)) −

1

∫
0

log(𝛾̇(𝑠))𝑑𝑠, (5)

the space 𝐻(0, 1) and Γ1 are isometric isomorphism (under the linear and inner-product operations). In particular, the inverse mapping 
𝜓−1
𝐵

∶𝐻(0, 1) → Γ1 is given by:

𝛾(𝑡) = 𝜓−1
𝐵

(ℎ)(𝑡) =
∫ 𝑡

0 exp(ℎ(𝑠))𝑑𝑠

∫ 1
0 exp(ℎ(𝜏))𝑑𝜏

.

2.2. Extension to a Hilbert space

Hilbert space, a.k.a. complete inner-product space, is a natural extension of finite Euclidean spaces to the infinite-dimensional 
case. Because the space is complete, all limiting operations are closed, and techniques in calculus can be directly used. In this paper, 
we focus on using a stochastic process to provide a linear framework for time warping functions, where a key step is to transform 
the warping functions into a space with the conventional 𝕃2 metric, and then the orthonormal basis representations can be fully 
3

exploited.
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However, we can see that the space 𝐻(0, 1) defined in Equation (4) contains only bounded functions, and is therefore not a 
Hilbert space. In this section, we aim to extend it to a Hilbert space in the following form:

𝐸(0,1) =
{
ℎ ∈ 𝕃2([0,1])| 1

∫
0

ℎ(𝑡)𝑑𝑡 = 0
}
. (6)

It is easy to verify that 𝐸(0, 1) is indeed the smallest Hilbert space containing the space 𝐻(0, 1). Basically, we just remove the lower 
bound 𝑚𝛾 and upper bound 𝑀𝛾 in Equation (4).

As 𝐸(0, 1) is also a subspace of 𝕃2([0, 1]), we can at first find a complete orthonormal system for 𝕃2([0, 1]):{
𝜙0(𝑡) = 1, 𝜙2𝑗−1(𝑡) =

√
2 sin(2𝑗𝜋𝑡), 𝜙2𝑗 (𝑡) =

√
2cos(2𝑗𝜋𝑡), 𝑗 ≥ 1, 𝑡 ∈ [0,1]

}
.

In Equation (6), the only constraint is that ∫ 1
0 𝜙(𝑡) 𝑑𝑡 = 0. Therefore, by removing the constant term 𝜙0(𝑡) = 1, we obtain the complete 

orthonormal system in the space 𝐸(0, 1) as follows:

𝐵 =
{
𝜙2𝑗−1(𝑡) =

√
2 sin(2𝑗𝜋𝑡), 𝜙2𝑗 (𝑡) =

√
2cos(2𝑗𝜋𝑡), 𝑗 ≥ 1, 𝑡 ∈ [0,1]

}
. (7)

We also extend the warping space Γ1 in Equation (2) to the following form:

Γ2 =
{
𝛾 ∶ [0,1]→ [0,1]|𝛾̇ ∈ }

, (8)

where the  space is an extended probability density function space in (Egozcue et al., 2006) and given as

 =
{
𝑓 ∶ [0,1]→ℝ|𝑓 > 0, log𝑓 ∈ 𝕃2([0,1])

}
. (9)

It was shown in (Van den Boogaart et al., 2014) that under the CLR transformation from  to 𝐸(0, 1) ∶ 𝑐𝑙𝑟(𝑓 ) = log(𝑓 ) −
∫ 1
0 log(𝑓 (𝑠)) 𝑑𝑠,  and 𝐸(0, 1) are isometric isomorphism and the inverse transformation is given by

𝑐𝑙𝑟−1(ℎ) =
⎧⎪⎨⎪⎩

exp(ℎ)
∫ 1
0 exp(ℎ(𝑠))𝑑𝑠

, if ∫ 1
0 exp(ℎ(𝑠))𝑑𝑠 <∞

exp(ℎ), o.w.
.

Thus, if {𝜙𝑗}𝑗≥1 is a set of bounded complete orthonormal basis functions in 𝐸(0, 1) (e.g. Set 𝐵 in Equation (7)), then {𝜓𝑗}𝑗≥1, with 
𝜓𝑗 =

exp[𝜙𝑗 ]

∫ 1
0 exp[𝜙𝑗 (𝑠)]𝑑𝑠

, is also a complete orthonormal basis for  .

It is easy to see that Γ2 contains Γ1. However, we point out that a derivative operation is not a bijective mapping between Γ2
and  . For any 𝛾 ∈ Γ2, we have 𝛾̇ ∈  . However, for any 𝑓 ∈  , if ∫ 1

0 𝑓 (𝑡)𝑑𝑡 =∞, then there will not be a 𝛾 ∈ Γ2 such that 𝑓 = 𝛾̇ . 
Moreover, the linear operations in  cannot be directly used in Γ2. This is obvious because the product of two density functions may 
not have a finite integration value on [0, 1].

2.3. Stochastic process representation for time warpings

In Section 2.2, we have extended the bounded inner-product space 𝐻(0, 1) to a Hilbert space 𝐸(0, 1). We also show that using 
the CLR transformation, the density function space  is isometrically isomorphic to the 𝐸(0, 1) space. This implies we can build a 
systematical representation on space 𝐸(0, 1), and then use the inverse CLR transformation to project it back into space  .

2.3.1. Characterize time warping via second-order stochastic process

In this section, we will develop a new procedure to characterize time warping functions in Γ1. By the isometric isomorphism, we 
only need to represent functions in 𝐻(0, 1). This representation process is based on a second-order stochastic process in the Hilbert 
space 𝐸(0, 1) (smallest extension of 𝐻(0, 1)).

In the Karhunen-Loève expansion (Hsing and Eubank, 2015), any mean-square continuous stochastic process can be represented as 
an infinite linear combination of a set orthonormal basis in 𝕃2([0, 1]), where the basis functions are eigenfunctions for the covariance 
kernel 𝐾(𝑠, 𝑡). According to Mercer’s Theorem (Hsing and Eubank, 2015), the kernel function must meet the requirements of being 
continuous, symmetric, and non-negative definite. Therefore, our focus is on developing a suitable kernel function that satisfies these 
requirements to properly utilize the second-order process. In principle, any complete orthonormal basis can be used. For example, 
we may adopt the bounded Fourier set 𝐵 in Equation (7) to characterize bounded function in ℎ(0, 1). The construction of the kernel 
is given in the following proposition, where the detailed proof is given in Appendix B.

Proposition 2.2. For any non-negative sequence {𝜇𝑖}∞𝑖=1 such that 
∑∞

𝑖=1 𝜇𝑖 <∞, let

∞∑

4

𝐾(𝑠, 𝑡) =
𝑖=1

𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡), for all 𝑠, 𝑡 ∈ [0,1],
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where {𝜙𝑖}∞𝑖=1, given in Equation (7), is the complete orthonormal system in 𝐸(0, 1). Then 1) 𝐾 converges absolutely and uniformly, and 2) 
𝐾 is a continuous, symmetric, non-negative definite function.

Remark. By Proposition 2.2, we can easily construct a kernel function using convergent sequence {𝜇𝑖} and basis {𝜙𝑖}. Note that 
{𝜇𝑖} do not necessarily follow the decreasing order. By the uniqueness of eigenvalues {𝜆𝑖} in Mercer’s theorem (Hsing and Eubank, 
2015), {𝜆𝑖} are in fact the ordered sequence (from large to small) of {𝜇𝑖}. In practical use, common choices of {𝜇𝑖} are 𝜇𝑖 =

1
𝑖𝑠

, or 
1

𝑖(log(𝑖))𝑠 , with 𝑠 ≥ 2.

Based on the above result, we can simulate a random process in 𝐸(0, 1) as follows: Given the orthonormal basis 𝐵 = {𝜙𝑖(𝑡)}
and non-negative sequence {𝜇𝑖}∞𝑖=1 with convergent sum, we can generate a mean-centered second-order process 𝑋 in the following 
form:

𝑋(𝑡) =
∞∑
𝑖=1

𝐺𝑖𝜙𝑖(𝑡), (10)

where 𝐺𝑖 are uncorrelated random variables with mean 0 and variance 𝜇𝑖. Note that there is no constraint for the type of distribution 
on 𝐺𝑖, which fully characterizes the randomness in 𝑋(𝑡). We can choose any distribution to explore all possible variabilities. In 
particular, to generate a Gaussian process, we only need to set 𝐺𝑖 ∼𝑁(0, 𝜇𝑖).

In practice, we can only simulate a second-order stochastic process 𝑋(𝑡) in Equation (10) with finite 𝑚 terms in the sum. That 
is, 𝜇𝑖 = 0 and 𝐺𝑖 = 0 when 𝑖 > 𝑚. In this case, it is always true that 

∑∞
𝑖=1 𝜇𝑖 <∞ and the corresponding covariance kernel 𝐾 is 

well-defined. This truncated version can be written as:

𝑋𝑚(𝑡) =
𝑚∑
𝑖=1

𝐺𝑖𝜙𝑖(𝑡). (11)

As 𝜙𝑖 are all bounded functions, 𝑋𝑚(𝑡) is also bounded and therefore in 𝐻(0, 1). By the isometric isomorphism between 𝐻(0, 1) and 
Γ1, we can transform 𝑋𝑚(𝑡) to build a warping function. In summary, the generative procedure for time warping function in Γ1 is 
given in Algorithm 1.

Algorithm 1 Generative procedure for warping function in Γ1.

Require: Basis functions {𝜙𝑖}𝑚𝑖=1 in Equation (7).

Generate coefficient sequence 𝐺𝑖 with any probability distribution with mean 0 and variance 𝜇𝑖, 𝑖 = 1, ⋯ , 𝑚.

𝑋𝑚(𝑡) =
∑𝑚

𝑖=1𝐺𝑖𝜙𝑖(𝑡).

𝛾𝑚(𝑡) =
∫ 𝑡

0 exp(𝑋𝑚 (𝑠))𝑑𝑠

∫ 1
0 exp(𝑋𝑚 (𝜏))𝑑𝜏

.

Output 𝛾𝑚 .

Remark. If we allow 𝑚 =∞ in Algorithm 1, then we will need to add two conditions to simulate warping function: 1) 
∑∞

𝑖=1 𝜇𝑖 <∞, 
and 2) ∫ 1

0 exp
(
𝑋𝑚(𝑠)

)
𝑑𝑠 <∞. In this case, the simulated warping function may not be in Γ1 (i.e., bounded), but will be in Γ2 as 

defined in Equation (8).

2.3.2. Illustration

We now illustrate Algorithm 1 with 𝑚 = 20, where the coefficients {𝐺𝑖}20𝑖=1 are from each of the following 5 different distributions:

(a) 𝐺𝑖 ∼𝑁(𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 = 0, and 𝜎𝑖 =
1
𝑖
, i.e., normal distribution with mean 0 and variance 1

𝑖2
.

(b) 𝐺𝑖 ∼𝐿𝑎(𝜇𝑖, 𝑏𝑖), where 𝜇𝑖 = 0, 𝑏𝑖 =
1√
2𝑖

, i.e., Laplacian distribution with mean 0 and variance 1
𝑖2

.

(c) 𝐺𝑖 ∼𝑈 (𝑎𝑖, 𝑏𝑖), where 𝑎𝑖 = −
√
3
𝑖

, 𝑏𝑖 =
√
3
𝑖

, i.e., uniform distribution with mean 0 and variance 1
𝑖2

.

(d) 𝐺𝑖 ∼𝑁(𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 = 0, and 𝜎𝑖 =
1
2𝑖 , i.e., normal distribution with mean 0 and variance 1

(2𝑖)2 .

(e) 𝐺𝑖 ∼𝑁(𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 = 0, and 𝜎𝑖 =
1
5𝑖 , i.e., normal distribution with mean 0 and variance 1

(5𝑖)2 .

In each of these 5 cases, we generate 10 stochastic processes. The results are shown in Fig. 2. It is easy to see that the simulated 
warping functions have more variabilities than the previous example 𝛾(𝑡) = 𝑒𝑎𝑡−1

𝑒𝑎−1 in Fig. 1(b). The first three columns show time 
warpings and their corresponding functions in 𝐻(0, 1) from one Gaussian process (Column (a)) and two non-Gaussian processes 
(Columns (b) and (c)). The warping functions exhibit different types of variabilities, whereas the degrees of warping look similar as 
they share the same variances for the coefficients 𝐺𝑖. As a comparison, we also show two other Gaussian processes ((Columns (d) 
and (e)) with smaller variances. It is obvious that when the variance gets smaller, the corresponding warping functions stay closer to 
5

the identity warping function 𝛾𝑖𝑑 (𝑡) = 𝑡.
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Fig. 2. Simulation examples using Algorithm 1, with 10 stochastic processes in 𝐻(0, 1) in the top row and the corresponding 10 time warping functions in Γ1 in 
the bottom row. Column (a): 𝐺𝑖 ∼ 𝑁(0, (1∕𝑖)2), Column (b) 𝐺𝑖 ∼ 𝐿𝑎(0, 1∕(

√
2𝑖)), Column (c) 𝐺𝑖 ∼ 𝑈 (−

√
3∕𝑖, 

√
3∕𝑖), Column (d) 𝐺𝑖 ∼ 𝑁(0, (1∕(2𝑖))2), Column (e) 

𝐺𝑖 ∼𝑁(0, (1∕(5𝑖))2).

2.4. Estimation of basis functions via principal component analysis

In Section 2.3, we have developed a stochastic process representation to represent the time warping functions. This representation 
is based on a complete orthonormal system in the 𝕃2 space. In practice, we may look for an alternative basis with the given 
observations. In this section, we will explore modeling with the functional principal component analysis (fPCA) method.

2.4.1. Modeling and resampling via fPCA

fPCA is a basis representation method in the 𝕃2 space. When time warping observations in Γ1 are given, we may transform them 
(stated in Theorem 2.1) into the 𝐻(0, 1) space and then estimate orthonormal basis via the fPCA method. This fPCA method has been 
exploited in (Happ et al., 2019), where the goal was dimension reduction on functional data. In this paper, we will extend the idea 
to model and resample warping functions. The detailed process is given in Algorithm 2.

Algorithm 2 Modeling and resampling with fPCA.

Require: 𝑁 observed warping functions 𝛾𝑛 in Γ1 .

Transform the warping functions 𝛾𝑛 in to 𝐻(0, 1): 𝑋𝑛(𝑡) = log( ̇𝛾𝑛(𝑡)) − ∫ 1
0 log( ̇𝛾𝑛(𝑠)) 𝑑𝑠.

Calculate the mean 𝜇̂(𝑡) = 1
𝑁

∑𝑁

𝑛=1𝑋𝑛(𝑡) and the covariance 𝐾̂(𝑠, 𝑡) = 1
𝑁−1

∑𝑁

𝑛=1(𝑋𝑛(𝑠) − 𝜇̂(𝑠))(𝑋𝑛(𝑡) − 𝜇̂(𝑡)).
Apply spectral decomposition to 𝐾̂ to get the eigen sequence {(𝜆𝑖, 𝑒𝑖)}𝑁𝑖=1 .

Find cutoff threshold 𝛿, let 𝑚 =max{𝑖|𝜆𝑖 > 𝛿}.

for 𝑘 = 1 ∶𝑚 do

Calculate the coefficients 𝑍𝑛𝑘 = ∫ 1
0 (𝑋𝑛(𝑡) − 𝜇̂(𝑡))𝑒𝑘(𝑡)𝑑𝑡, 𝑛 = 1, 2, ⋯ 𝑁 .

Use the sample {𝑍𝑛𝑘}𝑁𝑛=1 to estimate their distribution 𝐷𝑘 .

end for

for 𝑟 = 1 ∶𝑅 do (resample warping functions)

Simulate coefficient 𝐺𝑘 using the estimated distribution 𝐷𝑘 .

𝑋𝑟(𝑡) = 𝜇̂(𝑡) +∑𝑚

𝑘=1𝐺𝑘𝑒𝑘(𝑡).

𝛾𝑟(𝑡) =
∫ 𝑡

0 exp(𝑋𝑟 (𝑠))𝑑𝑠

∫ 1
0 exp(𝑋𝑟 (𝜏))𝑑𝜏

.

end for

Output {𝛾𝑟(𝑡)}𝑅𝑟=1 .

Remark. We simplify the resampling process in Algorithm 2 by assuming the coefficients {𝐺𝑖}𝑁𝑖=1 are independent and then generate 
samples independently. This is true if the process is a Gaussian process. However, in the framework of Karhunen-Loève expansion, 
they are, in general, only uncorrelated. In practical use, we may need to model the coefficients simultaneously for a more appropriate 
resampling.

Model evaluation is an essential aspect of any data analysis process. The choice of evaluation technique depends on the type of 
model under consideration. For regression models, goodness-of-fit tests such as the one described by Maier et al. (2021) can be used 
to assess accuracy. In this paper, we choose to perform a direct visual inspection by doing resampling from the estimated model. This 
6

technique allows us to intuitively inspect the resampled processes and evaluate the model’s performance.
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Fig. 3. Result on Simulation 2. (a) The curves represent 500 simulated time warping functions, and the bold blue and magenta curves represent the first and 
second eigenfunctions, respectively. (b) Fraction of variance explained by the first 𝑛 principal components. The inlet plot provides a magnified view of the first five 
components. (c) Histogram of the first principal component. (d) Histogram of the second principal component. (e) 500 resampled functions with the estimated model. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.4.2. Resampling examples

We will use one example to illustrate Algorithm 2. In this example, 500 warping functions are given by: 𝛾𝑖(𝑡) = 𝛼1𝑖
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 +

𝛼2𝑖
𝑒𝑏𝑖𝑡−1
𝑒𝑏𝑖−1

+ (1 −𝛼1𝑖 −𝛼2𝑖)
𝑒
𝑑𝑖

(
𝑒−𝑐𝑖𝑡−1
𝑒−𝑐𝑖−1

)
−1

𝑒𝑑𝑖−1
, where 𝑎𝑖, 𝑑𝑖 ∼𝐸𝑥𝑝( 13 ) (i.e., exponential distribution with mean 13 ), 𝑏𝑖 ∼ 𝜒2(3) (i.e., Chi-square 

distribution with mean 3), and 𝑐𝑖 ∼ Γ(0.5, 2) (i.e., gamma distribution with mean 1). In addition, we have 𝑥𝑖, 𝑦𝑖 ∼ 𝑈 (0, 1), and set 
𝛼1𝑖 = 𝑥𝑖, 𝛼2𝑖 = 𝑚𝑎𝑥(𝑦𝑖 − 𝑥𝑖, 0). The principal component analysis and resampling result are shown in Fig. 3. At first, the 500 warping 
functions are shown in Panel (a). The top 10 eigenvalues are shown in Panel (b). We can see that the first two principal components 
explain over 99% of the total variance, and thus the analysis is conducted only on the these two components. To visualize the 
variability, we superimpose the first two eigenfunctions in Panel (a). The distributions of the first two principal components are 
shown in Panels (c) and (d), respectively. There is no simple parametric form to describe the distributions, and we choose to adopt 
the conventional Gaussian kernel method to estimate distribution functions. Based on the estimated two distributions, we can use 
Algorithm 2 to resample 500 warping functions, and the result is shown in Panel (e). It can be easily seen that the resampled curves 
also look very similar to the original time warping functions in Panel (a), which indicates the effectiveness of the fPCA modeling 
procedure.

2.4.3. Resampling on the Berkeley growth data

In this section, we demonstrate the practical application of our resampling process using the well-known Berkeley Growth curve 
data (available at the link: https://rdrr .io /cran /fda /man /growth .html), where the heights of 39 boys and 54 girls were recorded at 
thirty-one time points from age 1 to age 18 (Ramsay and Silverman, 2006). As each growth curve is increasing in the age interval [1, 
18], it is also a warping function, albeit with a different domain and range. To examine the variability of time warping, we linearly 
transform the growth functions into standard warping functions from [0, 1] onto [0, 1]. The original recording time points are not 
evenly spaced, and we adopt a smoothing procedure using cubic splines. The smoothed curves in both male and female groups are 
shown in Column (a) of Fig. 4. We will use the proposed method in Section 2.4 to model and resample these observations.

Fig. 4 also shows the principal component analysis and resampling result. The eigenvalues are shown in Column (b). We can 
see that the first twenty principal components explain almost 100% of the total variance in both groups. To visualize the variability 
contributed by the first three eigenfunctions, we plot curves representing the effects of these three eigenfunctions as perturbation 
from the mean in Columns (c), (d) and (e), respectively. Moreover, we adopt the conventional Gaussian kernel method to estimate 
the first twenty coefficient distributions. Based on these estimated results, we apply Algorithm 2 to resample the same number of 
warping functions as in the original dataset. The resampling results, shown in Column (e), closely resemble the original curves in 
Column (a) for both groups, demonstrating the practical effectiveness of the fPCA modeling procedure.

Remark. By utilizing the CLR-transformation, we can transform the warping space Γ1 into a subspace of 𝕃2, thereby enabling 
7

conventional statistical inference methods on time warping functions within the subspace. For example, the proposed representation 

https://rdrr.io/cran/fda/man/growth.html
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Fig. 4. Results on Berkeley growth data for the female group (1st row) and male group (2nd row). (a) Grey curves represent original growth functions in the linearly-

transformed space from [0, 1] to [0, 1]. The blue curve represents the mean function. (b) Fraction of variance explained by the first 𝑛 principal components. (c) 
Function curves in the form of 𝜇̂ + 𝑐𝜆̂

1∕2
1 𝑓1 to visualize the effect of the first eigenfunction as perturbation from the mean, where 𝜇̂ is the estimated mean function, 𝑐

ranges from -2 to 2 with a 0.5 step size, 𝑓1 is the estimated first eigenfunction, and 𝜆̂1 is the estimated first eigenvalue. (d) and (e), same as (c) except for the second 
and third eigenfunctions and eigenvalues, respectively. (f) resampled functions with the same sample size as the original ones.

can be used to conduct functional ANOVA (fANOVA) to test the difference between the means of two groups of warping functions. In 
addition, the CLR-transformed warping functions can be utilized as predictors for logistic regression. To exemplify these applications, 
we present an illustrative example in Appendix C, with the same Berkeley growth data.

3. Penalized function registration

In this section, we will utilize the proposed representation on time warping to provide a new approach for penalized function 
registration. Conventional penalties make the warping close to identity 𝛾𝑖𝑑(𝑡) = 𝑡, via second order (Ramsay and Silverman, 2006) or 
first order constraints (Srivastava and Klassen, 2016). Other types of penalties are given in the form of a prior term in a Bayesian 
framework. Bayesian registration is a relatively new paradigm that incorporates the prior information of warping function to conduct 
function registration (Cheng et al., 2014, 2016; Lu et al., 2017; Kurtek, 2017; Tucker et al., 2021; Matuk et al., 2021). Majority of 
these approaches are based on the SRVF (Square Root Velocity Function) transformation and explore appropriate representation of 
the warping functions on the corresponding tangent space, where a Gaussian process was used to model the inverse exponential 
transformed warping function. However, it was pointed out that this model is restricted to a bounded region of the positive orthant 
of the tangent space and linear operations on this region may get out of it and result in undesirable nonincreasing warping functions 
(Happ et al., 2019).

Our registration is based on the penalized framework in Srivastava and Klassen (2016), whereas we propose a new penalty 
on the CLR transformed warping space to control the degree of phase variation. The optimal warping is estimated by minimizing 
the penalized form with a gradient method instead of MCMC simulations in Bayesian approaches (Cheng et al., 2016; Kurtek, 
2017). Unlike previous isotropic covariance representation (Cheng et al., 2016), our full covariance can characterize nonuniform 
temporal variance as well as correlated relationship in the time domain. We emphasize that our covariance is well defined in the 
CLR transformed 𝕃2 subspace so that we can utilize a second order stochastic process (e.g. a Gaussian process) to characterize the 
penalty term.

3.1. New penalty on time warping

Let 𝑓 be an absolutely continuous function on the interval [0, 1]. Its SRVF is defined as 𝑞 ∶ [0, 1] → ℝ, 𝑞(𝑡) = ̇𝑓 (𝑡)∕
√| ̇𝑓 (𝑡)|

(Srivastava et al., 2011). For 𝛾 ∈ Γ1, the SRVF of 𝑓◦𝛾 is given by: (𝑞, 𝛾) =
√
𝛾̇(𝑡)𝑞(𝛾(𝑡)). For two function 𝑓1, 𝑓2 with corresponding 

SRVF functions 𝑞1, 𝑞2, the unpenalized optimal time warping between 𝑓1 and 𝑓2 is given in the following form:

𝛾𝑜𝑝𝑡 = argmin
𝛾∈Γ1

‖𝑞1 − (𝑞2, 𝛾)‖2.
In Cheng et al. (2016), a Dirichlet prior is assigned to model the warping 𝛾 . Here, we propose to use a Gaussian process to model 

the transformed warping functions in the 𝕃2 space, i.e., log(𝛾̇(𝑡)) − ∫ 1
0 log(𝛾̇(𝑠))𝑑𝑠 ∼ 𝐺𝑃 (0, 𝑐−1), where 𝑐(𝑠, 𝑡) ∶ [0, 1] × [0, 1] → ℝ

denotes the inverse of the covariance operator (i.e., we treat the covariance as a linear operator from 𝕃2 to 𝕃2 and assume it is 
invertible). Motivated by the quadratic exponent term in a Gaussian density function, the penalized function registration can be 
8

given in the following form:
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∥ 𝑞1 − (𝑞2, 𝛾) ∥2 +𝜆

1

∫
0

1

∫
0

(
log(𝛾̇(𝑠)) −

1

∫
0

log(𝛾̇(𝑢))𝑑𝑢
)
𝑐(𝑠, 𝑡)

(
log(𝛾̇(𝑡)) −

1

∫
0

log(𝛾̇(𝑢))𝑑𝑢
)
𝑑𝑠𝑑𝑡,

where 𝜆 > 0 is the penalty coefficient. The optimal time warping is obtained by minimizing the above form. As ∥ 𝑞1 − (𝑞2, 𝛾) ∥2=∥
𝑞1 ∥2 + ∥ 𝑞2 ∥2 − ∫ 1

0 2𝑞1(𝑡)(𝑞2, 𝛾)(𝑡)𝑑𝑡, we can get the loss function 𝐽 (𝛾) as follows:

𝐽 (𝛾) =

1

∫
0

− 2𝑞1(𝑡)𝑞2(𝛾(𝑡))
√
𝛾̇(𝑡)𝑑𝑡+ 𝜆

1

∫
0

1

∫
0

(
log(𝛾̇(𝑠)) −

1

∫
0

log(𝛾̇(𝑢))𝑑𝑢
)

𝑐(𝑠, 𝑡)
(
log(𝛾̇(𝑡)) −

1

∫
0

log(𝛾̇(𝑢))𝑑𝑢
)
𝑑𝑠𝑑𝑡.

(12)

Remark. The above loss function 𝐽 (𝛾) is for any symmetric positive definite kernel 𝑐(𝑠, 𝑡). There are two important special cases: 
isotropic and diagonal.

1. If the covariance is isotropic, we can set 𝑐(𝑠, 𝑡) = 𝑎𝛿(𝑠 − 𝑡) in Equation (12), where 𝑎 > 0 is a scale parameter. In this case, the 
penalty term is a scaled, squared 𝕃2 norm 𝑎‖ log(𝛾̇) − ∫ 1

0 log(𝛾̇(𝑢)) 𝑑𝑢‖2.

2. If the covariance is diagonal, we can set 𝑐(𝑠, 𝑡) = 𝑟(𝑡)𝛿(𝑠 − 𝑡) in Equation (12), where 𝑟(𝑡) > 0 is a weight function to denote the 
inverse variability at each time 𝑡. In this case, the penalty term is a weighted, squared 𝕃2 norm ‖√𝑟(log(𝛾̇) − ∫ 1

0 log(𝛾̇(𝑢)) 𝑑𝑢)‖2.

Regarding the selection of covariance, it should align with specific applications. In general, when one aims to apply a uniform 
penalty over all time points, it is advisable to utilize isotropic covariance. On the other hand, if the intention is to impose varying 
penalties at different time points, choosing a diagonal one is recommended. In situations where prior knowledge about co-variability 
is available, and there is a desire to incorporate it into the function alignment, the full case can be employed.

3.2. Optimization and the alignment algorithm

When there is no penalty term, the loss function is an integration with respect to the warping function and a dynamic programming 
procedure can be applied to get the optimal warping function, albeit on a discrete grid (Srivastava et al., 2011). However, with the 
penalty, the dynamic programming cannot be used because the loss function in Equation (12) can no longer be written under one 
integration. To deal with this problem, we propose to conduct the optimization via a gradient-based method. Note that the time 
warping function is in a non-vector space with conventional 𝕃2 metric, and the gradient on warping cannot be used for optimization. 
Analogous to the CLR transformation, we let 𝜙(𝑡) = log(𝛾̇(𝑡)) ∈ 𝕃2([0, 1]), and then we can get the new loss function of 𝜙 in the 
following form:

𝐽 (𝜙) =

1

∫
0

−2𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑑𝑡

+ 𝜆

1

∫
0

1

∫
0

(
𝜙(𝑠) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑐(𝑠, 𝑡)

(
𝜙(𝑡) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑑𝑠𝑑𝑡.

(13)

Note that we still have one constraint on 𝜙(𝑡), i.e., ∫ 1
0 exp(𝜙(𝑡)) 𝑑𝑡 = 1. So when we apply the gradient descend, we will need to 

conduct this normalization to update time warping function in each iteration. Using the variational method, we can calculate the 
gradient of the loss function as follows (see details in Appendix D):

𝜕𝐽

𝜕𝜙
(𝑡) = −2exp(𝜙(𝑡))

1

∫
𝑡

𝑞1(𝜇)𝑞̇2
( 𝜇

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝜇))𝑑𝜇

− 𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡)) + 𝜆

( 1

∫
0

𝑐(𝑡, 𝑠)𝜙(𝑠)𝑑𝑠+

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠 (14)

−

1 1

𝜙(𝑠)𝑐(𝑠, 𝑢)𝑑𝑠𝑑𝑢−

1

𝜙(𝑢)𝑑𝑢

1

𝑐(𝑡, 𝑠)𝑑𝑠−

1 1

𝑐(𝑠, 𝑢)𝜙(𝑢)𝑑𝑠𝑑𝑢
9

∫
0

∫
0

∫
0

∫
0

∫
0

∫
0
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−

1

∫
0

𝑐(𝑠, 𝑡)𝑑𝑠

1

∫
0

𝜙(𝑢)𝑑𝑢+ 2

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑣)𝑑𝑠𝑑𝑣
)
.

The gradients on the two special cases (isotropic covariance and diagonal covariance) are also given in Appendix D, where the 
calculations are more efficient because of the simplified structures on the covariance.

Based on the gradient function in Equation (14), we can apply the gradient descent method. We emphasize that this method 
has linear computational order w.r.t. the number of discrete points, and is highly efficient in practical calculation. In contrast, the 
well-known dynamic programming is in the quadratic order and can be time-consuming when the number of discrete points is large. 
In summary, the overall alignment process is given in the following algorithm:

Algorithm 3 Alignment with Penalized Registration.

Require: Two real valued functions 𝑓1, 𝑓2 on interval [0, 1], initial warping 𝛾0 , learning rate 𝜖, threshold 𝛿, tuning parameter 𝜆.

Calculate the SRVF functions 𝑞1(𝑡), 𝑞2(𝑡) of 𝑓1(𝑡), 𝑓2(𝑡), respectively.

Let 𝜙(𝑡) = log( ̇𝛾0(𝑡)), and estimate the loss function 𝐽 (𝜙) using Equation (13).

Calculate derivative 𝜕𝐽
𝜕𝜙
(𝑡) of the loss function using Equation (14).

while ‖ 𝜕𝐽

𝜕𝜙
‖ > 𝛿 do

𝜙(𝑡) ← 𝜙(𝑡) − 𝜖
𝜕𝐽

𝜕𝜙
.

𝜙(𝑡) ← 𝜙(𝑡) − log
( ∫ 1

0 exp(𝜙(𝑠)) 𝑑𝑠).

Recalculate the loss function with the new 𝜙(𝑡).
end while

Let 𝜙𝑛𝑒𝑤 be the last 𝜙 in the while loop. Then the optimal warping is: 𝛾𝑛𝑒𝑤(𝑡) = ∫ 𝑡

0 exp(𝜙𝑛𝑒𝑤(𝑠))𝑑𝑠.
Output 𝛾𝑛𝑒𝑤(𝑡).

Remark. 1) In addition to normalizing 𝜙 at each iteration, we can also use the Lagrange multiplier technique to solve the optimiza-

tion with constraint ∫ 1
0 exp(𝜙(𝑡)) 𝑑𝑡 = 1. It is found that this method provides similar optimization performance as that in Algorithm 3

and is therefore omitted in this paper. 2) Without the penalty (or prior) term, i.e., by setting the 𝜆 = 0, the registration procedure is 
symmetric. This is a main result in the SRVF-based registration method (Srivastava et al., 2011). However, when the penalty term is 
added, the registration is no longer symmetric. 3) For the selection of the penalty coefficient 𝜆, typically, a larger value will put more 
constraints on the warping and push it towards the identity warping function, while a smaller value will allow more flexibility to 
warping. An illustrative example can be found in Appendix E.1. The optimal 𝜆 value may vary depending on the specific objectives 
of practical applications.

3.3. Alignment illustration

We will now illustrate the penalized alignment with diagonal covariance kernel which describes nonuniform and uncorrelated 
constraints in the time domain. We also include other examples which focus on isotropic and full covariances in Appendix E. To the 
best of our knowledge, such studies have not been well explored in function registration.

We at first simulate two multimodal functions, i.e., 𝑓1(𝑡) = 6 ⋅ 0.820𝑡 ⋅ cos(10𝜋𝑡 − 𝜋

4 ) and 𝑔(𝑡) = 5 ⋅ 0.820𝑡 ⋅ sin(10𝜋𝑡), 𝑡 ∈ [0, 1]. 

Then we generate a warped version of 𝑔(𝑡) by defining 𝑓2(𝑡) = 𝑔(𝛾(𝑡)) with warping function 𝛾(𝑡) = 𝑒2𝑡−1
𝑒2−1 . The functions 𝑓1(𝑡)

and 𝑓2(𝑡) are shown as blue and green solid curves in Fig. 5(a), respectively. Moreover, we set 𝑐(𝑠, 𝑡) = 𝑟(𝑡)𝛿(𝑠 − 𝑡), where 

𝑟(𝑡) =

{
0.025(𝑡+ 0.1) if 0 ≤ 𝑡 ≤ 0.6
250𝑡 if 0.6 < 𝑡 ≤ 1

. 𝑟(𝑡) is positive and piecewise linear on [0, 1]. Its function value is close to 0 on [0, 0.6], and 

much larger in magnitude on (0.6, 1], which indicates nonuniform penalty in the time domain.

Our goal is find optimal warping function 𝛾∗ to minimize the loss function in Equation (12). The registration results are shown in 
Fig. 5. When 𝜆 = 0, and 10, the optimal warping functions are calculated using Algorithm 3 and shown in Fig. 5(b). We can see that 
when there is no penalty (i.e., 𝜆 = 0), the optimal warping can align 𝑓2 to 𝑓1 very well. The aligned functions 𝑓2(𝛾∗(𝑡)) are also shown 
in Fig. 5(a). We can see 𝑓2(𝛾∗(𝑡)) is right on the top of 𝑓1(𝑡) when 𝜆 = 0. When there is a penalty, the optimal warping at the first 
part in the domain overlap the optimal warping when 𝜆 = 0, but the latter part gets closer to the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡 (optimal 
warping when 𝜆 =∞). Indeed, 𝑓2(𝛾∗(𝑡)) is right on the top of 𝑓1(𝑡) when 𝜆 = 10 for 𝑡 ∈ [0, 0.3] and start to be lagged compare to 
the 𝑓1(𝑡) from 𝑡 = 0.3 when 𝜆 = 10. These results clearly demonstrate the effectiveness of the new penalty term for the nonuniform 
constraint in the time domain in the alignment process.

4. Boxplot of warping functions and outlier detection

In this section, we will utilize the proposed representation on time warping to construct functional boxplot for time warping 
functions. Boxplot is a standardized way of displaying the distribution of data and one of very few statistical graph methods that 
show outliers. Functional data are infinite dimensional, which brings challenge on theory as well as computation for a proper boxplot. 
The challenge is even higher for time warping functions due to their nonlinear structure in 𝕃2. To the best of our knowledge, boxplot 
10

representation for time warping is still an under-explored area.
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Fig. 5. Penalized registration illustration with diagonal covariance kernel. (a) Original functions and alignment functions. The blue and green solid curves are the two 
given functions 𝑓1 and 𝑓2 , the red and black dotted curves are the aligned 𝑓2 using Algorithm 3 with 𝜆 equal to 0 and 10, respectively. (b) Optimal warping functions 
in the alignment. The red and black curve are the optimal warping functions from Algorithm 3 with 𝜆 equal to 0 and 10, respectively. The green curve is the identity 
warping function.

Sun and Genton (2011) first generated functional boxplot using the notion of band depth. We can apply this method directly to 
the warping functions. Alternatively, to better address the conventional 𝕃2 property, we can construct the boxplot by applying this 
functional boxplot to the CLR-transformed warping functions. However, either method constructs the boxplot in a point-wise manner 
which ignores the overall structure of the warping functions and may lose essential information such as shape and smoothness of 
the functions. Xie et al. (2017) proposed a metric-based method for constructing warping boxplot. This method is based on the 
square-root-velocity-function (SRVF) method and tangent space. It was pointed out that there is no one-to-one mapping between 
the tangent space and warping space, which may result in un-desired (e.g. non-increasing) warping functions in the estimation 
process.

To deal with these problems, we propose to construct the warping boxplot by adopting the idea of functional bagplot (Hyndman 
and Shang, 2010), which we will describe in this section. The functional bagplot uses only the first two principal components to 
provide a bivariate version of boxplot, which may cause severe information loss. In contrast, to preserve more useful and complex 
information, we will use the first 𝑝 dominant principal components (e.g., with a 95% cutoff on cumulative variance). Specifically, 
we first find the principal component vector of the CLR-transformed warping functions, and then rank the vector according to the 
Tukey’s halfspace location depth (Tukey, 1975). After that, we build the inner and outer regions, which contain approximately 50% 
and 99% of the warping data with respect to the largest Tukey’s depth, respectively. Finally, we will display the region in the original 
warping space, which is the warping boxplot we built. The detailed procedure is given below.

4.1. Functional boxplot

The estimation of the principal components has been thoroughly described in Section 2.4. To generate the inner region in the 
boxplot, we order the vectors of the estimated principal components according to decreasing depth values. Let 𝛾[𝑛] denote the sample 
curve associated with the 𝑛th largest Tukey depth value. We select the first 50% of data points, i.e., 𝛾𝑛=[1],⋯,[𝑁∕2], and use these data 
points to construct a convex hull; this is the inner region which contains at least 50% of the total number of functional observations. 
Then we find the corresponding original warping functions, and define the first quartile warping as 𝛾𝑄1

(𝑡) =min{𝛾[1](𝑡), ⋯ , 𝛾[𝑁∕2](𝑡)}, 
and the third quartile warping as 𝛾𝑄3

(𝑡) =max{𝛾[1](𝑡), ⋯ , 𝛾[𝑁∕2](𝑡)}.

The outer region (or fence) of the boxplot is the convex hull of the points contained within the region obtained by inflating the 
inner region (relative to the Tukey median) by a factor 𝜌. Hyndman and Shang (2010) used a value of 𝜌 = 2.58, as that will allow 
the outer region to contain 99% of the observations when only two principal components are used, which follows bivariate normal 
distributions. Here we stick with this strategy and set inflation factor 𝜌 to make it contain 99% of the observation if the coefficient 

vectors follow a multivariate Gaussian distribution, i.e., 𝜌 =

√
𝜒2
𝑝,0.99
𝜒2
𝑝,0.5

, where 𝑝 is the dimension of coefficient vectors (the number of 

principal components we choose in the fPCA step). We define 𝛾𝐿𝐹 and 𝛾𝑈𝐹 , i.e., the lower and upper fences, that give the minimum 
or maximum value of all the warping functions stay in this inflated region along their domain. Furthermore, the warping median is 
defined as the function that corresponds to the Tukey’s depth median, and the corresponding functions whose principal component 
coordinates stay outside the outer region are identified as outliers. In summary, the generative steps of construction of the boxplot 
for time warping function in Γ1 is given in Algorithm 4.

Remark. 1) The influence of the inflation factor 𝜌 on the construction of the boxplot is demonstrated in Appendix F. It is apparent 
that by elevating the value of 𝜌, we can observe a reduction in the detection of outliers. The choice of 𝜌 should ideally be informed 
by prior information about the percentage of contamination in the data. 2) We in fact use the convex hulls built in 𝐻(0, 1) space to 
detect outliers, i.e., any warping outside the convex hull will be identified as outliers. The boxplot in the warping space is only for 
visualization purpose. That is, in this boxplot, any curves outside the phase outlier cutoffs will be identified as outliers. However, we 
11

point out that the curves inside the boxplot may also be outliers.
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Algorithm 4 Construct boxplot for warping functions.

Require: 𝑁 observed warping functions 𝛾𝑛 in Γ1 .

Transform the warping functions 𝛾𝑛 in to 𝐻(0, 1): 𝑋𝑛(𝑡) = log( ̇𝛾𝑛(𝑡)) − ∫ 1
0 log( ̇𝛾𝑛(𝑠)) 𝑑𝑠.

Calculate the mean 𝜇̂(𝑡) = 1
𝑁

∑𝑁

𝑛=1𝑋𝑛(𝑡) and the covariance 𝐾̂(𝑠, 𝑡) = 1
𝑁−1

∑𝑁

𝑛=1(𝑋𝑛(𝑠) − 𝜇̂(𝑠))(𝑋𝑛(𝑡) − 𝜇̂(𝑡)).
Apply spectral decomposition to 𝐾̂ to get the eigen sequence {(𝜆𝑖, 𝑒𝑖)}𝑁𝑖=1 .

Find cutoff threshold 𝛿, let 𝑚 =max{𝑖|𝜆𝑖 > 𝛿}.

for 𝑘 = 1 ∶𝑚 do

Calculate the coefficients 𝑍𝑛𝑘 = ∫ 1
0 (𝑋𝑛(𝑡) − 𝜇̂(𝑡))𝑒𝑘(𝑡)𝑑𝑡, 𝑛 = 1, 2, ⋯ 𝑁 .

end for

Calculate the Tukey’s depth 𝐷(𝑛) for 𝑍𝑛 = (𝑍𝑛1, ⋯ , 𝑍𝑛𝑚), 𝑛 = 1, 2, ⋯ 𝑁 .

Construct convex hull 1 using 50% of 𝑍𝑛. with highest depth 𝐷(𝑛).
Construct convex hull 2 using data points staying in the region by inflating the convex hull 1 by a factor 𝜌 w.r.t. the Tukey’s depth median.

1𝑠𝑡 quartile: 𝛾𝑄1
(𝑡) = min

1≤𝑛≤𝑁{𝛾𝑛(𝑡) ∶𝑍𝑛. ∈ Convex Hull 1 (50%)};

3𝑟𝑑 quartile: 𝛾𝑄3
(𝑡) = max

1≤𝑛≤𝑁{𝛾𝑛(𝑡) ∶𝑍𝑛. ∈ Convex Hull 1 (50%)};

Lower fence: 𝛾𝐿𝐹 (𝑡) = min
1≤𝑛≤𝑁{𝛾𝑛(𝑡) ∶𝑍𝑛. ∈ Convex Hull 2 (99%)};

Upper fence: 𝛾𝑈𝐹 (𝑡) = max
1≤𝑛≤𝑁{𝛾𝑛(𝑡) ∶𝑍𝑛. ∈ Convex Hull 2 (99%)};

Flag any points outside convex hull 2 as outliers: {𝛾𝑛(𝑡) ∶𝑍𝑛. ∉ Convex Hull 2}.

Fig. 6. Result on Illustration. (a) The curves show simulated 500 time warping functions.(b) Fraction of variance explained by the first 𝑛 principal components. (c) 2 
layer convex hulls (d) the warping boxplot generated by Algorithm 4, the red dashed curves are the outlier candidates.

We also emphasize that we can apply our proposed representation to perform functional interpolation for time warping function, 
which is a process of determining the unknown functions that lie in between the known functions. A brief description is given in 
Appendix G.

4.2. Illustration

We use one example to thoroughly illustrate the proposed boxplot for warping functions in Algorithm 4. In this example, 500 
warping functions 𝛾𝑖, 𝑖 = 1, ⋯ , 500 on [0, 1] are generated in the following form:

𝛾𝑖(𝑡) = 𝜓−1
𝐵

(𝐺1,𝑖𝜙1(𝑡) +𝐺2,𝑖𝜙2(𝑡)), 𝑡 ∈ [0,1],

where the coefficients 𝐺𝑘,𝑖 ∼ 𝐿𝑎(0, 1√
2𝑘
), i.e., Laplacian distribution with mean 0 and variance 1

4𝑘2 , 𝑘 = 1, 2, 𝑖 = 1, ⋯ , 500, and the 

orthonormal basis functions 𝜙1, 𝜙2 ∈𝐻(0, 1) are given as 𝜙1(𝑡) =
√
2 sin(2𝜋𝑡) and 𝜙2(𝑡) =

√
2cos(2𝜋𝑡).

These 500 warping functions are shown in Panel (a) of Fig. 6. The top 10 eigenvalues in the covariance function are shown in 
Panel (b). We can see that the first two principal components explain over 99% of the total variance. Therefore, we construct the 
boxplot only use the first two principal components and set inflation factor 𝜌 to 2.58.

In Panel (c), we show the 50% and 99% convex hulls. Specifically, the region surrounded by blue lines represents the convex hull 
1 generated using Algorithm 4, which is analogous to the bag in Hyndman and Shang (2010), and the one surrounded by the cyan 
lines represents the convex hull 2. The dots represent the bivariate principal components of the CLR-transformed warping functions. 
Tukey’s depth median is shown as the black dot, and the red dots outside the convex hulls are the identified outliers. In Panel (d), 
we show the corresponding boxplot in warping space. The dark and light grey regions correspond to the blue and cyan convex hulls 
in Panel (c), which contains all the warpings in these two convex hulls, respectively. The bold black curve and the red dashed curves 
are the warping median and the identified warping outliers, which correspond to the black and red points in Panel (c), respectively.

This proposed boxplot apparently provides a reasonable way to characterize the main body; the gray region contains most of the 
warping functions. In addition, this method can appropriately identify the outliers in the data. 11 of the 500 warpings are identified 
as outliers, accounting for about 2.2% of the entire function set. We can further divide these outliers into three categories: 1) warpings 
that increase too slowly at the beginning, corresponding to the relatively flat red dashed curves in the first half, 2) warpings that 
increase too quickly at the beginning, corresponding to the red dashed curves in which the latter half is very flat, and 3) warpings 
12

that increase relatively fast at the beginning, very fast at the end, but very slow in the middle.
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Fig. 7. Result in Case 1. (a) 110 simulated observations, where the gray and colorful curves represent 100 main body and 10 outlier warping functions, respectively. 
(b)(c)(d) Boxplots generated by the proposed method, functional boxplot to CLR-transformed function, and the Xie method, respectively. The thin red lines in each 
plot are the identified outliers. (e) Conventional functional boxplot (CFB). (f) Enhanced functional boxplot (EFB). (g) Functional bagplot (Bag). (h) Functional HDR 
plot.

4.3. Outlier detection and comparison with other methods

In section 4.2, we have illustrated the proposed method using one simulation, which provides all algorithmic details in the 
functional boxplot construction. In this section, we will use another simulation to examine the performance of this boxplot for outlier 
detection. We will also compare its performance with competing methods.

In this simulation, we will generate two groups of warpings, where the first group includes 100 warpings as the main body, and 
the second group includes 10 warpings, treated as outliers. At first, we will test if our method can detect these outliers or not. Then 
we will compare our method with other functional plot methods, including the Xie method (Xie et al., 2017), functional boxplot (Sun 
and Genton, 2011), enhanced functional boxplot (Sun and Genton, 2011), functional bagplot (Hyndman and Shang, 2010), and 
functional Highest density region (HDR) boxplot (Hyndman and Shang, 2010).

Simulation: In this example, 110 warping functions are generated in the following form:

𝛾𝑖(𝑡) = 𝜓−1
𝐵

( 𝑚∑
𝑗=1

𝐺𝑗,𝑖𝜙𝑗 (𝑡)
)
, 𝑡 ∈ [0,1].

The first group of 100 warpings are generated by letting 𝑚 = 2 and coefficients 𝐺𝑗,𝑖 ∼𝑁(0, 12𝑖 ), i.e., Gaussian distribution with mean 
0 and variance 1

4𝑖2 , 𝑗 = 1, 2, 𝑖 = 1, ⋯ , 100, and the orthonormal basis functions 𝜙𝑗 is the first 2 basis functions in Equation (7).

We consider 3 different cases for the 10 warping functions in the second group, which represent different types of functional 
outliers. They are generated as follows:

• Case 1: 𝑚 = 30 and coefficients {𝐺𝑗𝑖} ∼ 𝑁(0, 10
𝑖
), i.e., Gaussian distribution with mean 0 and variance 100

𝑖2
, 𝑗 = 1, ⋯ , 30, 𝑖 =

1, ⋯ 10.

• Case 2: 𝑚 = 30 and coefficients {𝐺𝑖} ∼ 𝐿𝑎(0, 1√
2𝑖
), i.e., Laplacian distribution with mean 0 and variance 1

𝑖2
, 𝑗 = 1, ⋯ , 30, 𝑖 =

1, ⋯ 10.

• Case 3: 𝑚 = 10 and coefficients {𝐺𝑖} ∼ 𝑁(0, 𝑖40 ), i.e., Gaussian distribution with mean 0 and variance 𝑖2

1600 , 𝑗 = 1, ⋯ , 10, 𝑖 =
1, ⋯ 10.

We show the results for the three cases in Figs. 7, 8 and 9, respectively.

Results in Case 1 (Magnitude): In this case, coefficients {𝐺𝑖} of larger variances are used to generate the warping outliers 
compared to the main body. The results are shown in Fig. 7. In Panel (a), we show 110 simulated warping curves. The 100 warping 
functions in the first group, i.e., the main body, are shown in grey. In contrast, the ten outlier warpings are shown as colored curves. 
As we can see, all ten outlier curves are partially located outside the central region formed by the first set of warpings. We call these 
13

outliers magnitude outliers to properly indicate their outlying pattern. The boxplot constructed by the proposed method is shown in 
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Table 1

Outliers Detection Performance: the two numbers in each cell represent sensitivity and specificity, respectively.

Method Proposed CLR Xie CFB EFB Bag HDR
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) ( 0
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) ( 0
10
,
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,

96
100

) ( 0
10
,

94
100

)

Fig. 8. Same as that in Fig. 7 except for result in Case 2.

Panel (b), where we mark outliers candidates as thin red lines. We use the first two principal components in this case and set the 
inflation ratio 𝜌 to 2.58. It can be seen that we correctly identified all 10 outlier warpings. However, we mistakenly classified one 
main body warping as outlier.

In Panel (c), we show the boxplot generated by applying our proposed functional boxplot on CLR-transformed warping functions. 
We also marked outliers candidates as thin red lines. This method also correctly identified the 10 magnitude warping outliers. In 
Panel (d), we show the boxplot generated by the Xie Method. The bold black curve represents the warping median curve. The blue, 
green, bold red, and magenta curves represent two quartiles 𝛾𝑄1

, 𝛾𝑄3
, and two outlier cutoffs 𝛾𝐿𝐹 , 𝛾𝑈𝐹 , respectively. Moreover, the 

thin dotted red curves are the identified outlier candidates. This method also correctly identified the 10 outliers, but misclassified 
3 main body ones as outliers. In Panels (e) and (f), we show the boxplots generated using functional boxplot with Band depth 
and functional boxplot with modified band depth, and the identified outliers are shown in red. It is easy to see that both methods 
correctly identified only two of the 10 outliers. In Panels (g) and (h), we show the functional bagplot and functional highest density 
region boxplot, and the identified outliers are also shown as dotted red curves. Functional bagplot gets all the outliers identified but 
misclassified one normal one, whereas the functional HDR plot only identifies six outliers.

For the convenience of comparison across different methods, the detailed outlier detection results for all methods in this case are 
shown in the 1st row of Table 1.

Result in Case 2 (Magnitude & Shape): In this case, the warpings in outlier group are generated using a Laplacian distribution. 
We also set the variance of the coefficients smaller than the coefficients in Case 1 so that the magnitude is no longer the dominant 
factor. The result in Case 2 is shown in Fig. 8. We display the simulated warping functions in Panel (a). We can see that all outlier 
curves have higher curvature than those in the main body. Furthermore, some of them are partially located outside the central 
region formed by the first set of warpings, so we say these outliers are not only outlying in shape but also in magnitude. The boxplot 
constructed by the proposed method is shown in Panel (b). We use the first three principal components and set the inflation ratio 
14

𝜌 to 2.99. It can be seen that all 10 outliers are correctly identified. We show the boxplots generated by all the other six methods 
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Fig. 9. Same as that in Fig. 7 except for result in Case 3.

in Panels (b) to (h), respectively. The detailed outlier detection results in all methods in this case are summarized in the 2nd row of 
Table 1.

Result in Case 3 (Shape): In this case, we use 10 basis functions and a relatively smaller variance of normally-distributed 
coefficients to generate the outlier warpings. All 110 functions are shown in Panel (a) of Fig. 9. We see that the outlier warpings stay 
inside the main body and are very close to the identity, but are different from the main body with respect to their high-curvature 
shape. The boxplots generated by all methods are shown in Panels (b) to (h), respectively. The outlier detection results of all 7 
methods are shown in the 3rd row of Table 1. We use the first three principal components and set the inflation ratio 𝜌 to 2.99 for 
our proposed method. It can be seen that only our proposed method can correctly identify these simulated outliers.

To sum up the results in these three cases, we can see that only our proposed method can achieve high values in both sensitivity 
and specificity. Compared with our method, the competing methods have no problem identifying outliers differing on magnitude, 
but they often fail to identify outliers differing on shape. We also notice that all methods can have high values on specificity, which 
indicates they all perform well in terms of true negative.

5. Real data application

In this section, we apply our method to the CDC COVID data (available at https://covid .cdc .gov) to test our proposed method in 
real-world data outlier detection. We select the cumulative COVID cases from 51 states, 3 territories, and New York City, respectively, 
from 03-11-2020 to 07-12-2022. Since the growth curve (i.e. cumulative cases over time) in each region is increasing during this 
period, it can be treated as a warping function, albeit with a different domain and range. To examine the variability of time warping, 
we linearly transform the growth functions into standard warping functions from [0, 1] onto [0, 1]. The original curves are shown in 
Panel (a) of Fig. 10. For better visualization, we change the x-axis into the original data range, i.e., March-2020 to July-2022. We 
will use the proposed method in Section 4 to construct the boxplot and identify locations with different growth patterns compared 
to the other states.

In this example, the first three, six, and eight principal components explained more than 75%, 90%, and 95% of the total variance, 
respectively. However, we have only 55 data points. Due to the sparsity of the data, we cannot construct the Convex hull in high 
dimensions very effectively. Therefore, we only use the first three principal components to construct the boxplot and set the inflation 
factor to 2.99. Fig. 10 (b) shows the boxplot constructed by our proposed method. To visualize the difference between the identified 
outliers and the main body, we superimpose the 10 identified outliers on the boxplot. They are Alaska, Guam, Hawaii, Maine, 
Montana, New York City, Puerto Rico, Virgin Islands, Vermont, and Wyoming. In Panel (c), we showed the map of the United States 
and highlighted locations identified as outliers in red.

We will now provide interpretation on these identified outliers. At first, Guam, Puerto Rico, Virgin Islands are united states 
territories, and Alaska and Hawaii are not on the main continent, so it makes sense that their total case growth curves differ from 
other states. Phylogenetic analysis and sentinel surveillance suggest that the introduction of COVID-19 into NYC from travelers 
started during early to min-February 2020. CDC pointed out COVID-19 spreads when an infected person breathes out droplets and 
very small particles that contain the virus, and people who are closer than 6 feet from the infected person are most likely to get 
15

infected. According to demographic statistics, New York City has the highest population density of any major city in the United 

https://covid.cdc.gov
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Fig. 10. Result on COVID-19 data. (a) The curves represent the original total case functions, linearly-transformed from [0, 1] to [0, 1]. For better visualize the time 
range of the real data, the x-axis is displayed from March 2020 to July 2022. (b) The proposed boxplot and outlier candidates generated using Algorithm 4. (c) The 
US state map, where the red ones are the identified outlier states. (d) The boxplot and outlier candidates generated using the Xie method.

States, with over 27,000 people per square mile. COVID-19 in New York City had the largest following outbreak due to the highest 
population density. The growth curve, shown by the red dashed line in Fig. 10(b), was the sharpest at the beginning, so it is reasonable 
to identify New York City as an outlier candidate. On the contrary, Alaska, Wyoming, and Montana are the three states with the 
lowest population densities, which are 1.28, 6, and 7.42 per square mile, respectively. The first cases were found relatively late, and 
the growth curves were more flat at the beginning than elsewhere. As seen from Fig. 10 (b), Maine and Montana are identified as 
outliers because of the slow growth at the beginning.

As a comparison, we show the boxplot generated using the Xie Method in Panel (d), where the four boundaries are overlapped 
with each other and are difficult to interpret. This method detects only three outliers: Guam, Puerto Rico, and the Virgin Islands. 
This result does not seem reasonable because Vermont, and Hawaii have similar growth curves with the identified three curves, but 
are not identified.

Another aspect of interest is the rate of increase in COVID-19 cases. To analyze this, we take the derivatives of the case increase 
functions and perform functional alignment to obtain warping functions. By constructing boxplots on the estimated functions, we 
can gain insights into the variability of the rate of increase across different locations. Due to the space limitation, we have included 
this analysis as an alternative study in Appendix H.

6. Summary

In this paper, we have proposed a new representation for time warping functions as a linear inner-product space, which is an 
apparent advantage over the previous nonlinear approximation methods. The critical element of this process is a derivative operation 
of the warping function and then a centered logratio transformation to map the warping functions into a conventional 𝕃2 space. We 
have also defined two warping spaces to make the transformation mathematically precise. The first one, bounded warping space 
Γ1, is isometrically isomorphic to the space of bounded, centered 𝕃2 functions. We extended this bounded 𝕃2 to a Hilbert space, 
mapping it to a more general warping space Γ2. These two warping spaces provide sufficient representation for practical use. We 
then stated several statistical inferences under this new representation, including using fPCA to construct a model for functional 
warping observations, applying our new representation in penalized function registration to provide time-variant and temporally 
correlated constraints in function alignment, and constructing boxplot for time warping functions. Finally, we illustrate the method 
in a real-world dataset and obtain reasonable result.

We point out that Γ2 is not a vector space, which limits its usefulness in the modeling process. We will aim to extend the warping 
space to a Hilbert space in the future. If this can be done, the warping will be fully described by a stochastic process in 𝕃2 space. In 
the context of penalized function registration, we have used a Gaussian process for warping. To capture the intricacies of practical 
data, we will explore non-Gaussian processes with broader applicability in the future. The determination of the optimal regular-

ization coefficient 𝜆, multiple penalized registration, and comparing different registration methods are all challenging problems of 
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critical importance that require further investigation. In addition, a symmetric penalized form and Bayesian alignment represents an 
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intriguing and promising topic of research that deserves further exploration. Our current work focused on constructing the boxplot 
for time warping functions. We can further apply this into the general functional boxplot and outlier detection, i.e., we can decom-

pose functional data into amplitude and phase components, and then construct individual boxplot for each of these two components 
to better visualize variability in functional data.

Appendix A. Norm and inner-product in 𝚪𝟏

The norm of the identity warping function 𝛾(𝑡) = 𝑡 is 0, representing the origin in the warping space. As the warping’s curvature 
increases, the norm also increases, indicating that it deviates further from the identity warping (or the origin). Additionally, an 
increase in the inner-product value signifies a decrease in the angle between two warping functions, indicating that they are more 
similar or closer to each other. The following simple example is used to illustrate this concept:

The method 𝛾𝑖(𝑡) =
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 is used to simulate six warping functions. The values of 𝑎𝑖 are set to be -5, -3, -1, 1, 3, and 5 for 

𝑖 = 1, ⋯ , 6, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. The warping functions are shown in Fig. A.11. The inner-product matrix for these six warping functions can 
be calculated using Equation (3), and is as follows:

𝑀𝑖𝑛𝑝 =

𝛾1 𝛾2 𝛾3 𝛾𝑖𝑑 𝛾4 𝛾5 𝛾6⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

𝛾1 2.08 1.25 0.42 0 −0.42 −1.25 −2.08
𝛾2 1.25 0.75 0.25 0 −0.25 −0.75 −1.25
𝛾3 0.42 0.25 0.08 0 −0.08 −0.25 −0.41
𝛾𝑖𝑑 0 0 0 0 0 0 0
𝛾4 −0.42 −0.25 −0.08 0 0.08 0.25 0.41
𝛾5 −1.25 −0.75 −0.25 0 0.25 0.75 1.25
𝛾6 −2.08 −1.25 −0.42 0 0.42 1.25 2.08

.

The diagonal elements of the matrix 𝑀𝑖𝑛𝑝 represent the norm of these warping functions. The off-diagonal elements represent the 
inner product between the corresponding row and column labels. The warping functions exhibit the greatest curvature in 𝛾1 and 𝛾6, 
which also have the highest norms. Conversely, 𝛾3 and 𝛾4 exhibit the smallest norms, except for the identity warping. In summary, 
we can deduce that as the warping approaches the identity function, its norm decreases. Moreover, we can observe that the inner 
product of 𝛾1 and 𝛾2 is greater than the inner product of 𝛾1 and 𝛾3, and the inner product of 𝛾1 and 𝛾4, among others. This indicates 
that when two warping functions are closer to each other, their inner product is larger, implying that the angle between them is 
smaller.

Appendix B. Proof of Proposition 2.2

For any 𝑛 ∈ ℕ,

𝑛∑
𝑖=1

||||𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)|||| ≤
𝑛∑
𝑖=1

||||𝜇𝑖√2
√
2
|||| = 2

𝑛∑
𝑖=1

𝜇𝑖 ≤ 2
∞∑
𝑖=1

𝜇𝑖 <∞.

Then, ∀𝑠, 𝑡 ∈ [0, 1]
∞∑
𝑖=1

||||𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)|||| = lim
𝑛→∞

𝑛∑
𝑖=1

||||𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)|||| ≤ lim
𝑛→∞

2
𝑛∑
𝑖=1

𝜇𝑖 = 2
∞∑
𝑖=1

𝜇𝑖 <∞.

Thus, 𝐾(𝑠, 𝑡) =
∑∞

𝑖=1 𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡) converges absolutely.

Fig. A.11. Six warping functions were simulated using the standard method 𝛾𝑖(𝑡) = 𝑒𝑎𝑖 𝑡−1
𝑒𝑎𝑖 −1

, where 𝑎𝑖 = −5, −3, −1, 1, 3, 5 for 𝑖 ranging from 1 to 6, with the bold black 
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line representing the identity warping.
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For any 𝑠, 𝑡 ∈ [0, 1], we have:||||𝐾(𝑠, 𝑡) −
𝑛∑
𝑖=1

𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)
|||| ≤

∞∑
𝑖=𝑛+1

||||𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)|||| ≤ 2
∞∑

𝑖=𝑛+1
𝜇𝑖.

As 
∑∞

𝑖=1 𝜇𝑖 <∞, we can get:

lim
𝑛→∞

||||𝐾(𝑠, 𝑡) −
𝑛∑
𝑖=1

𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)
|||| = 0.

Thus, 
∑∞

𝑖=1 𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡) converges uniformly.

We will then prove that 𝐾 is symmetric, non-negative definite, and continuous:

• Symmetry: It is easy to see that 𝐾(𝑠, 𝑡) =
∑∞

𝑖=1 𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡) =
∑∞

𝑖=1 𝜇𝑖𝜙𝑖(𝑡)𝜙𝑖(𝑠) =𝐾(𝑡, 𝑠), ∀𝑠, 𝑡 ∈ [0, 1].
• Non-negative definiteness: ∀𝑓 ∈𝐿2([0, 1]), we have:

1

∫
0

1

∫
0

𝑓 (𝑠)𝐾(𝑠, 𝑡)𝑓 (𝑡)𝑑𝑠𝑑𝑡 =

1

∫
0

1

∫
0

𝑓 (𝑠)
∞∑
𝑖=1

𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡)𝑓 (𝑡)𝑑𝑠𝑑𝑡

=
∞∑
𝑖=1

𝜇𝑖

1

∫
0

1

∫
0

𝑓 (𝑠)𝜙𝑖(𝑠)𝜙𝑖(𝑡)𝑓 (𝑡)𝑑𝑠𝑑𝑡

=
∞∑
𝑖=1

𝜇𝑖

( 1

∫
0

𝑓 (𝑠)𝜙𝑖(𝑠)𝑑𝑠
)2

≥ 0.

• Continuity: Define 𝐾𝑛(𝑠, 𝑡) ∶=
∑𝑛

𝑖=1 𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡). As 𝐾 is uniformly convergent, for any 𝜖 > 0 there exists 𝑛𝜖 ∈ ℕ such that for 
any 𝑠, 𝑡 ∈ [0, 1]:||||𝐾(𝑠, 𝑡) −𝐾𝑛𝜖

(𝑠, 𝑡)
|||| < 𝜖∕3.

Because the basis function 𝜙𝑖 is uniformly continuous, there exists 𝛿 > 0 such that for any 𝑠, 𝑠′, 𝑡, 𝑡′ ∈ [0, 1]:

||||𝐾𝑛𝜖
(𝑠, 𝑡) −𝐾𝑛𝜖

(𝑠′, 𝑡′)
|||| = ||||

𝑛𝜖∑
𝑖=1

𝜇𝑖𝜙𝑖(𝑠)𝜙𝑖(𝑡) −
𝑛𝜖∑
𝑖=1

𝜇𝑖𝜙𝑖(𝑠′)𝜙𝑖(𝑡′)
|||| < 𝜖∕3,

whenever |𝑠 − 𝑠′| < 𝛿 and |𝑡 − 𝑡′| < 𝛿. Hence,||||𝐾(𝑠, 𝑡) −𝐾(𝑠′, 𝑡′)
|||| ≤ ||||𝐾(𝑠, 𝑡) −𝐾𝑛𝜖

(𝑠, 𝑡)
||||+ ||||𝐾𝑛𝜖

(𝑠, 𝑡) −𝐾𝑛𝜖
(𝑠′, 𝑡′)

||||+||||𝐾𝑛𝜖
(𝑠′, 𝑡′) −𝐾(𝑠′, 𝑡′)

|||| < 𝜖.

Appendix C. Real data application on Berkeley growth data

C.1. fANOVA

We can apply the proposed framework to test if there is any significant difference between the mean growth curves of male and 
female groups. We first use the CLR-transformation in Equation (5) to convert growth warping curves to functions in the 𝕃2 space, 
this becomes a classical two-sample problem for functional data, and we adopt the functional ANOVA method for comparison (Zhang, 
2013). Without any Gaussian process assumption on the transformed data, we can use a bootstrap approach with 10000 replicates 
for comparison. The functional ANOVA has two types of bootstrap test statistics: 𝕃2-norm-based test statistic and the 𝐹 -type test 
statistic. It is found that the corresponding test statistics are 572.9428 and 49.7896, respectively, and the associated p-values for both 
statistics are less than 10−4. This indicates a significant difference between the mean growth curves of females and males.

C.2. Classification with logistic regression

We can also use the CLR-transformed warping functions as a predictor to classify whether the growth curve is male or female. 
Table C.2 shows the classification confusion matrix calculated using the first two eigenfunctions. It turns out that 33 out of 39 male 
growth curves and 47 out of 54 female growth curves were correctly classified by the model. Table C.3 presents the corresponding 
classification performance with various criteria such as precision, sensitivity, specificity, accuracy, and F-measure. We can see that 
all these criteria have high values at around 0.85. This desirable performance indicates that the logistic regression using transformed 
18

warping functions as an explanatory variable is an appropriate classification method.
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Table C.2

Confusion Matrix.

True gender

Male Female Total

Classification Result
Male 33 7 40

Female 6 47 53

Total 39 54 93

Table C.3

Classification Performance.

TP FP FN TN precision sensitivity specificity accuracy F-Measure

33 7 6 47 0.83 0.85 0.87 0.86 0.84

47 6 7 33 0.89 0.87 0.85 0.86 0.88

Appendix D. Calculation of the gradient of 𝑱 (𝝓)

To get ∇𝐽 (𝜙), we define 𝜙̃ = 𝜙 + 𝜖𝑔, where 𝜖 ∈ℝ, 𝑔 ∈𝐿2(0, 1), then,

𝐽 (𝜙̃) =

1

∫
0

−2𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp((𝜙+ 𝜖𝑔)(𝑠))𝑑𝑠
)√

exp((𝜙+ 𝜖𝑔)(𝑡))𝑑𝑡

+ 𝜆

1

∫
0

1

∫
0

(
𝜙(𝑠) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑐(𝑠, 𝑡)

(
𝜙(𝑡) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑑𝑠𝑑𝑡

= 𝐽1(𝜙̃) + 𝜆𝐽2(𝜙̃).

The directional derivative of 𝐽 in the direction 𝑔 is given by, 𝐷𝑔𝐽 (𝜙) = ⟨∇𝐽 (𝜙), 𝑔⟩ = 𝑑𝐽 (𝜙̃)
𝑑𝜖

||||𝜖=0, we calculate it by two parts, the 

first part:

𝑑𝐽1(𝜙̃)
𝑑𝜖

=

1

∫
0

−2𝑞1(𝑡)𝑞̇2
( 𝑡

∫
0

exp((𝜙+ 𝜖𝑔)(𝑠))𝑑𝑠
)

𝑡

∫
0

exp((𝜙+ 𝜖𝑔)(𝑢))𝑔(𝑢)𝑑𝑢
√
exp((𝜙+ 𝜖𝑔)(𝑡))𝑑𝑡

−

1

∫
0

𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp((𝜙+ 𝜖𝑔)(𝑠))𝑑𝑠
)√

exp((𝜙+ 𝜖𝑔)(𝑡))𝑔(𝑡)𝑑𝑡.

The second part is:

𝑑𝐽2(𝜙̃)
𝑑𝜖

=

1

∫
0

1

∫
0

(𝜙+ 𝜖𝑔)(𝑠)𝑐(𝑠, 𝑡)(𝜙+ 𝜖𝑔)(𝑡)𝑑𝑠𝑑𝑡

−

1

∫
0

(𝜙+ 𝜖𝑔)(𝑢)𝑑𝑢

1

∫
0

1

∫
0

(𝜙+ 𝜖𝑔)(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠𝑑𝑡

−

1

∫
0

(𝜙+ 𝜖𝑔)(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑡)(𝜙+ 𝜖𝑔)(𝑡)𝑑𝑠𝑑𝑡

+
( 1

(𝜙+ 𝜖𝑔)(𝑢)𝑑𝑢
)2

1 1

𝑐(𝑠, 𝑡)𝑑𝑠𝑑𝑡.
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0

∫
0

∫
0
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Let 𝜖 = 0:

𝐷𝑔𝐽1(𝜙) =

1

∫
0

−2𝑞1(𝑡)𝑞̇2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
) 𝑡

∫
0

exp(𝜙(𝑢))𝑔(𝑢)𝑑𝑢
√
exp(𝜙(𝑡))𝑑𝑡

−

1

∫
0

𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑔(𝑡)𝑑𝑡

= −2

1

∫
0

𝑡

∫
0

𝑞1(𝑡)𝑞̇2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)
exp(𝜙(𝑢))𝑔(𝑢)

√
exp(𝜙(𝑡))𝑑𝑢𝑑𝑡

−

1

∫
0

𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑔(𝑡)𝑑𝑡

= −2

1

∫
0

1

∫
𝑢

𝑞1(𝑡)𝑞̇2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑑𝑡 exp(𝜙(𝑢))𝑔(𝑢)𝑑𝑢

−

1

∫
0

𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑔(𝑡)𝑑𝑡

= −2

1

∫
0

1

∫
𝑡

𝑞1(𝑢)𝑞̇2
( 𝑢

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑢))𝑑𝑢 exp(𝜙(𝑡))𝑔(𝑡)𝑑𝑡

−

1

∫
0

𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))𝑔(𝑡)𝑑𝑡

=

⟨
𝑔, −2exp(𝜙(𝑡))

1

∫
𝑡

𝑞1(𝑢)𝑞̇2
( 𝑢

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑢))𝑑𝑢

− 𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡))

⟩
.

And,

𝐷𝑔𝐽2(𝜙) =

1

∫
0

1

∫
0

𝑔(𝑠)𝑐(𝑠, 𝑡)𝜙(𝑡)𝑑𝑠𝑑𝑡+

1

∫
0

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑡)𝑔(𝑡)𝑑𝑠𝑑𝑡

−

1

∫
0

𝑔(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠𝑑𝑡−

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑔(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠𝑑𝑡

−

1

∫
0

𝑔(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑡)𝜙(𝑡)𝑑𝑠𝑑𝑡−

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑡)𝑔(𝑡)𝑑𝑠𝑑𝑡

+ 2

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

𝑔(𝑣)𝑑𝑣

1

∫
0

1

∫
0

𝑐(𝑠, 𝑡)𝑑𝑠𝑑𝑡

= ⟨𝑔, 1

∫
0

𝑐(𝑡, 𝑠)𝜙(𝑠)𝑑𝑠⟩+ ⟨𝑔, 1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠⟩− ⟨𝑔, 1

∫
0

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑢)𝑑𝑠𝑑𝑢⟩
− ⟨𝑔, 1

𝜙(𝑢)𝑑𝑢

1

𝑐(𝑡, 𝑠)𝑑𝑠⟩− ⟨𝑔, 1 1

𝑐(𝑠, 𝑢)𝜙(𝑢)𝑑𝑠𝑑𝑢⟩
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0

∫
0

∫
0

∫
0
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− ⟨𝑔, 1

∫
0

𝑐(𝑠, 𝑡)𝑑𝑠

1

∫
0

𝜙(𝑢)𝑑𝑢⟩+ 2⟨𝑔, 1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑣)𝑑𝑠𝑑𝑣⟩.
Thus, the gradient is given by

∇𝐽 (𝜙) = −2exp(𝜙(𝑡))

1

∫
𝑡

𝑞1(𝑢)𝑞̇2
( 𝑢

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑢))𝑑𝑢

− 𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡)) + 𝜆

( 1

∫
0

𝑐(𝑡, 𝑠)𝜙(𝑠)𝑑𝑠+

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑡)𝑑𝑠

−

1

∫
0

1

∫
0

𝜙(𝑠)𝑐(𝑠, 𝑢)𝑑𝑠𝑑𝑢−

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

𝑐(𝑡, 𝑠)𝑑𝑠−

1

∫
0

1

∫
0

𝑐(𝑠, 𝑢)𝜙(𝑢)𝑑𝑠𝑑𝑢

−

1

∫
0

𝑐(𝑠, 𝑡)𝑑𝑠

1

∫
0

𝜙(𝑢)𝑑𝑢+ 2

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

1

∫
0

𝑐(𝑠, 𝑣)𝑑𝑠𝑑𝑣
)
.

In particular, we show two special cases on the covariance structure.

1. ℎ is a diagonal covariance: By setting 𝑐(𝑠, 𝑡) = 𝑟(𝑡)𝛿(𝑡 − 𝑠)), we can derive the gradient as:

∇𝐽 (𝜙) = − 2exp(𝜙(𝑡))

1

∫
𝑡

𝑞1(𝜇)𝑞̇2
( 𝜇

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝜇))𝑑𝜇

− 𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡)) + 2𝜆
(
𝑟(𝑡)𝜙(𝑡)

+

1

∫
0

𝜙(𝑢)𝑑𝑢

1

∫
0

𝑟(𝑠)𝑑𝑠− 𝑟(𝑡)

1

∫
0

𝜙(𝑠)𝑑𝑠−

1

∫
0

𝜙(𝑠)𝑟(𝑠)𝑑𝑠
)
.

2. ℎ is an isotropic covariance: By setting 𝑐(𝑠, 𝑡) = 𝑎𝛿(𝑡 − 𝑠), we can derive the gradient as:

∇𝐽 (𝜙) = − 2exp(𝜙(𝑡))

1

∫
𝑡

𝑞1(𝜇)𝑞̇2
( 𝜇

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝜇))𝑑𝜇

− 𝑞1(𝑡)𝑞2
( 𝑡

∫
0

exp(𝜙(𝑠))𝑑𝑠
)√

exp(𝜙(𝑡)) + 2𝑎𝜆
(
𝜙(𝑡) −

1

∫
0

𝜙(𝑠)𝑑𝑠
)
.

Appendix E. Penalized registration illustrations

E.1. Isotropic covariance

We here use one example to illustrate the penalized alignment with isotropic covariance kernel. We at first simulate one bimodal 
function, i.e., 𝑓 (𝑡) = 𝑧1𝑒

−(𝑡−0.22)2∕2 + 𝑧2𝑒
−(𝑡−0.78)2∕2, where 𝑧1, 𝑧2 ∼ 𝑈 (0.75, 1.25), 𝑡 ∈ [0, 1]. Then we obtain two functions 𝑓𝑖(𝑡) =

𝑓 (𝛾𝑖(𝑡)) with warping functions 𝛾𝑖(𝑡) =
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 , 𝑖 = 1, 2, where 𝑎1 = −0.5 and 𝑎2 = 2. In addition, we scale 𝑓2(𝑡) up by 1.1 for better 

visualization. The functions 𝑓1(𝑡) and 𝑓2(𝑡) are shown as blue and green solid curves, respectively, in Fig. E.12(a). Our goal is find 
optimal warping function 𝛾∗ to minimize the loss function in Equation (12). When 𝜆 = 0, 40, and 80, the optimal warping functions 
are calculated using Algorithm 3 and shown in Fig. E.12(b). We can see that when 𝜆 = 0, the optimal warping is very close to the 
one estimated using dynamic programming; the difference is only about numerical errors. When 𝜆 gets larger, the optimal warping is 
closer to the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡 (optimal warping when 𝜆 =∞). The aligned functions 𝑓2(𝛾∗(𝑡)) are also shown in Fig. E.12(a). 
We can see 𝑓2(𝛾∗(𝑡)) is right on the top of 𝑓1(𝑡) when 𝜆 = 0, and only slightly shift from 𝑓2(𝑡) when 𝜆 = 80. These results clearly 
21

demonstrate the effectiveness of the penalty term and penalty coefficient in the alignment process.
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Fig. E.12. Penalized registration illustration with isotropic covariance kernel. (a) Original functions and alignment functions. The blue and green solid curves are 
the two given functions 𝑓1 and 𝑓2 , respectively, the red dotted curve is the aligned 𝑓2 using dynamic programming, and the black, cyan, and magenta dotted curves 
are the aligned 𝑓2 using Algorithm 3 with 𝜆 equal to 0, 40, 80, respectively. (b) Optimal warping functions in the alignment. The red curve is the optimal warping 
function from dynamic programming. The black, cyan, magenta, and green curves are the optimal warping functions from Algorithm 3 with 𝜆 equal to 0, 40, 80, and 
∞, respectively.

E.2. Full covariance

We have shown two examples to illustrate penalty on time warping using the diagonal terms on the covariance kernel, which 
essentially describes the variability at each time point. Now we use another example to illustrate the penalized alignment with 
general non-diagonal covariance which takes into account co-variability between two different time points. In general, 𝑐(𝑠, 𝑡) in 
Equation (13) can be any symmetric, positive definite and invertible kernel. To simplify the illustration, we here assume 𝑐(𝑠, 𝑡) has 
the following block form:

𝑐(𝑠, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑎𝛿(𝑠− 𝑡), if 𝑠, 𝑡 ∈ [0, 12 ) × [0, 12 )

𝑏𝛿(𝑠− 𝑡), if 𝑠, 𝑡 ∈ [ 12 ,1] × [ 12 ,1]

𝑧𝛿(𝑠− 𝑡− 1
2 ), if 𝑠, 𝑡 ∈ [ 12 ,1] × [0, 12 )

𝑧𝛿(𝑠− 𝑡+ 1
2 ), if 𝑠, 𝑡 ∈ [0, 12 ) × [ 12 ,1]

, (E.1)

where 𝑎 > 0, 𝑏 > 0, and 𝑎𝑏 > 𝑧2. It is easy to verify that 𝑐(𝑠, 𝑡) is symmetric and positive definite.

Let 𝜁(𝑠) = 𝜙(𝑠) − ∫ 1
0 𝜙(𝑢) 𝑑𝑢, the penalty term in the loss function in Equation (13) with the given 𝑐(𝑠, 𝑡) can be rewritten as:

1

∫
0

1

∫
0

(
𝜙(𝑠) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑐(𝑠, 𝑡)

(
𝜙(𝑡) −

1

∫
0

𝜙(𝑢)𝑑𝑢
)
𝑑𝑠𝑑𝑡

=

1
2

∫
0

(√
𝑎𝜁(𝑠)𝑑𝑠+

√
𝑏𝜁(𝑠+ 1

2
)
)2

𝑑𝑠+ 2(𝑧−
√
𝑎𝑏)

1
2

∫
0

𝜁(𝑠)𝜁(𝑠+ 1
2
)𝑑𝑠.

By fixing the diagonal coefficients 𝑎 and 𝑏, we focus on the penalty with respect to the off-diagonal coefficient 𝑧. It is easy to see 

that 1) if ∫ 1
2

0 𝜁(𝑠)𝜁(𝑠 + 1
2 ) 𝑑𝑠 < 0, then the penalty is a decreasing function of 𝑧, and 2) if ∫ 1

2
0 𝜁(𝑠)𝜁(𝑠 + 1

2 ) 𝑑𝑠 > 0, then the penalty is 
an increasing function of 𝑧. We now use two simulations to illustrate these two cases, respectively. In each case, we let 𝑎 = 𝑏 = 1 and 
set 𝑧 = 0.9, 0.2, −0.2, −0.9 to see how the co-variates will affect the function alignment.

Case 1. [∫ 1
2

0 𝜁(𝑠)𝜁(𝑠 + 1
2 ) 𝑑𝑠 < 0]: We first simulate one bimodal function 𝑓1(𝑡) = 2 sin(4𝜋𝑡), 𝑡 ∈ [0, 1], and then warp 𝑓1 to get 𝑓2 as 

follows:

𝑓2(𝑡) =

{
𝑓1(0.5𝛾1(2𝑡)), if 0 ≤ 𝑡 ≤ 0.5

𝑓1(0.5𝛾2(2𝑡− 1) + 0.5), if 0.5 < 𝑡 ≤ 1
,

where 𝛾𝑖(𝑡) =
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 , 𝑖 = 1, 2, with 𝑎1 = −5, 𝑎2 = 5. The functions 𝑓1(𝑡) and 𝑓2(𝑡) are shown as yellow and green solid curves, 

respectively, in Fig. E.13(a). The optimal warping functions 𝛾∗(𝑡) are shown in Fig. E.13(b). We can see that when there is 
no penalty, the optimal warping can align 𝑓2 to 𝑓1 very well. The corresponding 𝑓2(𝛾∗(𝑡)) in Fig. E.13(a) stays right on the 
top of 𝑓1(𝑡) when there is no penalty. When there is a penalty, same as the previous two simulation examples, the optimal 
warping also gets closer to the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡. In addition, it can be seen that as 𝑧 becomes smaller, the optimal 
22

warping gets closer to the identity warping, and the corresponding 𝑓2(𝛾∗(𝑡)) moves further away from 𝑓1. We point out that 
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Fig. E.13. Penalized registration illustration with full covariance for Case 1. (a) Original functions and alignment functions. The yellow and green solid curves are the 
two given functions 𝑓1 and 𝑓2 , respectively, and the red dotted curve is the aligned 𝑓2 without penalty, i.e., 𝜆 = 0. The black, cyan, magenta, and blue dotted curve 
are the aligned 𝑓2 with penalty term with same 𝜆 = 105 and 𝑧 in Equation (E.1) equal to 0.9, 0.2, −0.2, and −0.9, respectively. (b) Optimal warping functions in the 
alignment. The red curve is the optimal warping functions with 𝜆 equal to 0. The black, cyan, magenta, and blue dotted curve are the optimal warping functions with 
penalty term with 𝑧 equal to 0.9, 0.2, −0.2, and −0.9, respectively.

Fig. E.14. Same as Fig. E.13 except for illustration with full covariance for Case 2.

because 2(𝑧 −
√
𝑎𝑏) ∫ 1

2
0 𝜁(𝑠)𝜁(𝑠 + 1

2 ) 𝑑𝑠 is always non-negative, the off-diagonal terms add more penalty to the warping than 

the diagonal terms only, given in the integration ∫ 1
2

0

(√
𝑎𝜁(𝑠) 𝑑𝑠 +

√
𝑏𝜁(𝑠 + 1

2 )
)2

𝑑𝑠.

Case 2. [∫ 1
2

0 𝜁(𝑠)𝜁(𝑠 + 1
2 ) 𝑑𝑠 ≥ 0]: We first simulate one multi-modal function 𝑓1(𝑡) = 2 sin(8𝜋𝑡), 𝑡 ∈ [0, 1], and then warp 𝑓1 to get 𝑓2

as follows:

𝑓2(𝑡) =

⎧⎪⎪⎨⎪⎪⎩

𝑓1(0.25𝛾1(4𝑡)), if 𝑡 ∈ [0,0.25)

𝑓1(0.25𝛾2(4𝑡− 1) + 0.25), if 𝑡 ∈ [0.25,0.5)

𝑓1(0.25𝛾1(4𝑡− 2) + 0.5), if 𝑡 ∈ [0.5,0.75)

𝑓1(0.25𝛾2(4𝑡− 3) + 0.75), if 𝑡 ∈ [0.75,1]

,

where 𝛾𝑖(𝑡) =
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 , 𝑖 = 1, 2, with 𝑎1 = −5, 𝑎2 = 5. The functions 𝑓1(𝑡) and 𝑓2(𝑡) are shown as yellow and green solid curves, 

respectively, in Fig. E.14(a). The optimal warping functions 𝛾∗(𝑡) are shown in Fig. E.14(b). Same as in case 1, when there is 
no penalty, the optimal warping can align 𝑓2 to 𝑓1 very well. When there is a penalty, same as in the previous two simulation 
examples, the optimal warping also gets closer to the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡. However, in contrast to the result in Case 
1, as 𝑧 becomes larger, the optimal warping gets closer to the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡, and the corresponding 𝑓2(𝛾∗(𝑡))

moves further away from 𝑓1. Because now 2(𝑧 −
√
𝑎𝑏) ∫ 1

2
0 𝜁(𝑠)𝜁(𝑠 + 1

2 ) 𝑑𝑠 is always non-positive, the off-diagonal terms reduce 
penalty from the diagonal terms. This further demonstrates of the effect of the off-diagonal terms in penalized registration.

E.3. Full covariance vs. diagonal

We have presented two examples to elucidate the impact of non-diagonal terms in the covariance kernel during penalized function 
alignment. It can be seen that these non-diagonal terms can either diminish or amplify the influence of diagonal terms. We now 
introduce a slightly more complex example that further illustrates how we can manipulate non-diagonal terms to alter the penalty 
23

across time points and compare the alignment result with a diagonal covariance.
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Fig. E.15. Illustration of penalized registration comparing full covariance and isotropic cases. (a) Original functions and alignment functions. The yellow and green 
solid curves are the two given functions 𝑓1 and 𝑓2 , respectively, and the red dotted curve is the aligned 𝑓2 without penalty, i.e., 𝜆 = 0. The black and blue dotted 
curve are the aligned 𝑓2 with penalty term using isotropic and full covariance, respectively. (b) Optimal warping functions in the alignment. The red curve is the 
optimal warping functions without penalty. The black and blue dotted curve are the optimal warping functions with isotropic and full covariance, respectively.

We at first simulate function 𝑓1(𝑡) =
⎧⎪⎨⎪⎩
2 sin(8𝜋𝑡), if 𝑡 ∈ [0,0.25) ∪ [0.5,0.75)
0.2 sin(16𝜋𝑡), if 𝑡 ∈ [0.25,0.5)
0.2 sin(32𝜋𝑡), if 𝑡 ∈ [0.75,1]

, and then warp 𝑓1 to get 𝑓2:

𝑓2(𝑡) =

⎧⎪⎪⎨⎪⎪⎩

𝑓1(0.25𝛾1(4𝑡)), if 𝑡 ∈ [0,0.25)

𝑓1(0.25𝛾2(4𝑡− 1) + 0.25), if 𝑡 ∈ [0.25,0.5)

𝑓1(0.25𝛾1(4𝑡− 2) + 0.5), if 𝑡 ∈ [0.5,0.75)

𝑓1(0.25𝛾2(4𝑡− 3) + 0.75), if 𝑡 ∈ [0.75,1]

,

where 𝛾𝑖(𝑡) =
𝑒𝑎𝑖𝑡−1
𝑒𝑎𝑖−1 , 𝑖 = 1, 2, with 𝑎1 = −5, 𝑎2 = 5. The functions 𝑓1(𝑡) and 𝑓2(𝑡) are shown as yellow and green solid curves, respec-

tively, in Fig. E.15(a).

In this example, we assume 𝑐(𝑠, 𝑡) has the following block form:

𝑐(𝑠, 𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎𝛿(𝑠− 𝑡), if 𝑠, 𝑡 ∈𝐴1

−𝑏𝛿(𝑠− 𝑡+ 1
2 ), if 𝑠, 𝑡 ∈ [0, 14 ) × [ 12 ,

3
4 )

−𝑏𝛿(𝑠− 𝑡− 1
2 ), if 𝑠, 𝑡 ∈ [ 12 ,

3
4 ) × [0, 14 )

𝑏𝛿(𝑠− 𝑡+ 1
2 ), if 𝑠, 𝑡 ∈ [ 14 ,

1
2 ) × [ 34 ,1]

𝑏𝛿(𝑠− 𝑡− 1
2 ), if 𝑠, 𝑡 ∈ [ 34 ,1] × [ 14 ,

1
2 )

0, o.w.

, (E.2)

where 𝐴1 = [0, 14 ) × [0, 14 ) ∪ [ 14 , 
1
2 ) × [ 14 , 

1
2 ) ∪ [ 12 , 

3
4 ) × [ 12 , 

3
4 ) ∪ [ 34 , 1] × [ 34 , 1]. By assigning values of 𝑎 = 1, 𝑏 = 0.9, we achieve the 

optimal warping, as illustrated in Fig. E.15. Fig. E.15(b) showcases the optimal warping functions 𝛾∗
𝜆=0. Notably, in the absence of 

any penalty, the optimal warping effectively aligns 𝑓2 with 𝑓1, as evident from the overlap of 𝑓2(𝛾∗𝜆=0) with 𝑓1(𝑡) in Fig. E.15(a).

However, with the introduction of a penalty, the behavior varies between the diagonal (isotropic in this example) and full 
covariance scenarios. In the isotropic case, where the covariance is defined as 𝑎𝛿(𝑠 − 𝑡), (𝑠, 𝑡) ∈ [0, 1] × [0, 1], the optimal warping 
approaches the identity warping 𝛾𝑖𝑑 (𝑡) = 𝑡 across different points, as illustrated by the black curve in Fig. E.15(b). Nevertheless, in the 
full covariance case, the optimal warping still closely resembles the penalty-free scenario in the sub-domain [0, 14 ) ×[ 12 , 

3
4 ). In contrast 

to the isotropic case, where the penalty on time 𝑠 and time 𝑡 is 𝑎𝜙(𝑠)2 +𝑎𝜙(𝑡)2, here the penalty becomes 𝑎𝜙(𝑠)2 +𝑎𝜙(𝑡)2 −2𝑏𝜙(𝑠)𝜙(𝑡), 
resulting in a diminished impact of the penalty introduced by diagonal terms. On the other hand, in the sub-domain [ 14 , 

1
2 ) × [ 34 , 1], 

the penalty becomes 𝑎𝜙(𝑠)2 +𝑎𝜙(𝑡)2 +2𝑏𝜙(𝑠)𝜙(𝑡). This amplifies the influence of the penalty, causing the optimal warping to be more 
constrained by the penalty. Consequently, the flexibility of the optimal warping here is limited in the sub-domain [ 14 , 

1
2 ) × [ 34 , 1].

Appendix F. Functional boxplot

We aim to investigate the impact of the inflation factor 𝜌 on outlier detection outcomes. In this context, we employ the example 
provided in Section 4.2 to demonstrate these effects. We have chosen values for 𝜌 of 1.28, 1.82, 2.08, and 2.9 to correspond to the 
inclusion of 68%, 90%, 95%, and 99.7% of the observations, assuming that the coefficient vectors adhere to a multivariate Gaussian 
distribution. The findings are presented in Fig. F.16. It becomes apparent that by increasing the value of 𝜌, we are able to detect an 
24

decreasing number of outliers.
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Fig. F.16. Results Demonstrating the Impact of 𝜌 in Outlier Detection, with 2 layer convex hulls in the top row and the warping boxplot generated by Algorithm 4 in 
the bottom row, the red dashed curves are the outliers candidates.

Fig. G.17. Results on Interpolation with 1D case in top row and 2D case in the bottom row. (a) the curves show simulated 500 time warping functions, (b) 2 layer 
convex hull and the red dots are uniformly randomed points (c) The corresponding curves in H(0,1) space. (d) The corresponding warping of the red dots in (c). The 
bold black curve is the corresponding Tukey’s depth median.

Appendix G. Functional interpolation

Functional interpolation is a process of determining the unknown functions that lie in between the known functions, and it can 
be easily achieved in the process of constructing the boxplot using fPCA method. In Fig. G.17 (a), the set of warping observations can 
be divided into two groups in both case. Specifically, in 1D case (1st row), one group of warping is convex function and the other is 
concave, and in 2D case (2nd row), one group of warping is arcsin-ish function, the other arctangent-ish. This can be easily seen in 
the fPCA results shown in Panel (b). The blue and cyan dots represent warping observations in Panel (a). And it is obvious that these 
points can be grouped into two clusters. It is difficult for us to get the functional interpolation directly in the warping space. Whereas 
by uniformly sampling (red) points in the gap between the two groups, we can easily plot out the corresponding clr-transformed 
25

warpings and the warpings in 𝐻(0, 1) and Γ1 spaces, respectively.
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Fig. H.18. Result on COVID-19 data. (a) The curves represent the estimated warping function for the derivative functions of the covids data, the x-axis is displayed 
from March 2020 to July 2022. (b) The proposed boxplot and outlier candidates generated using Algorithm 4. (c) The US state map, where the red ones are the 
identified outlier states. (d) The boxplot and outlier candidates generated using the Xie method.

Appendix H. Boxplot for the rate of increase in the COVID data

Apart from linearly transforming the COVID case growth functions into warping functions, we can get the warping functions 
by performing the Fisher-Rao functional alignment (Srivastava et al., 2011) to the derivative functions of the growth function. The 
estimated curves are shown in Panel (a) of Fig. H.18. We will use the proposed method in Section 4 to construct the boxplot and 
identify locations with different rate of increase patterns compared to the other states.

In this example, the first three, seven, and nine principal components explained more than 54%, 83%, and 95% of the total 
variance, respectively. However, we have only 55 data points. Due to the sparsity of the data, we cannot construct the Convex hull 
in high dimensions very effectively. Therefore, we only use the first three principal components to construct the boxplot and set the 
inflation factor to 2.99. Fig. H.18 (b) shows the boxplot constructed by our proposed method. To visualize the difference between the 
identified outliers and the main body, we superimpose the 11 identified outliers on the boxplot. They are Alaska, Arizona, California, 
Florida, Puerto Rico, Mississippi, North Carolina, New Mexico, New York City, Oregon, and South Carolina. In Panel (c), we showed 
the map of the United States and highlighted locations identified as outliers in red.

As a comparison, we show the boxplot generated using the Xie Method in Panel (d), where the four boundaries are overlapped 
with each other and are difficult to interpret. This method detects no outliers.
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