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A novel point process model for
neuronal spike trains

Yijia Ma and Wei Wu*

Department of Statistic, Florida State University, Tallahassee, FL, United States

Point process provides a mathematical framework for characterizing neuronal

spiking activities. Classical point process methods often focus on the conditional

intensity function, which describes the likelihood at any time point given its

spiking history. However, these models do not describe the central tendency or

importance of the spike train observations. Based on the recent development

on the notion of center-outward rank for point process, we propose a new

modeling framework on spike train data. The new likelihood of a spike train is a

product of the marginal probability on the number of spikes and the probability

of spike timings conditioned on the same number. In particular, the conditioned

distribution is calculated by adopting the well-known Isometric Log-Ratio

transformation. We systematically compare the new likelihood with the state-

of-the-art point process likelihoods in terms of ranking, outlier detection, and

classification using simulations and real spike train data. This new framework

can e�ectively identify templates as well as outliers in spike train data. It also

provides a reasonable model, and the parameters can be e�ciently estimated

with conventional maximum likelihood methods. It is found that the proposed

likelihood provides an appropriate ranking on the spike train observations,

e�ectively detects outliers, and accurately conducts classification tasks in the

given data.

KEYWORDS

point process model, spike train, rank-based likelihood, Isometric Log-Ratio

transformation, outlier detection

1 Introduction

Spike trains are a representation of the neuronal activity that encodes information

about the temporal structure of stimuli or behaviors. Classical methods for modeling spike

train data can be broadly classified into two categories: binnedmethods and temporal point

process methods. Binned methods, such as the peri-stimulus time histogram (PSTH) [1]

and the spike density function (SDF) [2], involve dividing the spike train data into fixed

time bins and counting the number of spikes in each bin. These methods are sensitive to

the choice of bin size and may not capture temporal details.

On the other hand, temporal point process methods model the spike train

as a series of discrete events in a continuous time domain [3, 4], which can

capture intricate temporal details and provide an accurate representation of the

spike train data. Most temporal point process methods are based on a conditional

probabilistic representation at each time, which naturally yields a likelihood for each

observation. Assuming a spike train (t1, · · · , tn) on [0,T) with a given T > 0 and
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its conditional intensity function of λ∗(t), its likelihood function is

given as

L =

(
n∏

i=1

λ
∗(ti)

)
exp

(
−

∫ T

0
λ
∗(s)ds

)
. (1)

This likelihood function is critically important for model

estimation and other statistical inferences. However, the likelihood

may not properly indicate the importance, or centrality, for a

given sample. For example, for a homogeneous Poisson process

where λ
∗(t) equals a constant λ, the likelihood in Equation (1)

of the point pattern (t1, · · · , tn) on [0,T) is L = λ
ne−λT .

This likelihood is a constant for all spike trains with n spikes,

regardless of their temporal locations. Intuitively, we may think

a spike train with evenly distributed spikes may be centrally

important for the homogeneous pattern, whereas this cannot be

well captured with the above likelihood function. Moreover, for

an inhomogeneous Poisson process with a deterministic intensity

function in Equation (1), one can easily find that spike trains

with spikes concentrated in areas of high intensity will have a

higher likelihood, whereas these observations may not properly

represent the spike train’s temporal characteristics. Additionally,

this likelihood function is not able to properly identify atypical

observations or outliers.

To address these issues, we propose a new, rank-based

likelihood framework for modeling the spike train data. Our

framework is motivated by recent developments in center-outward

ranks on point process [5–7]. Our proposed model describes the

likelihood of a spike train as the product of two terms. The first term

represents the marginal probability of the number of spikes, and

the second term represents the conditional probability of the spike

timings given this number. The conditional likelihood is based

on the well-known Isometric Log-Ratio (ILR) transformation [8],

which maps spike data in a fixed time interval to an unconstrained

Euclidean space for mathematical rigorousness and efficiency.

The rest of this manuscript is organized as follows: In Section

2, we will provide the details of the new likelihood for the

homogeneous Poisson process. We will then extend it into general

point processes via the Time Rescaling method and demonstrate

the advantages of the proposed rank-based likelihood. In Section

3, we will apply the new likelihood to a real world dataset to

demonstrate its effectiveness in characterizing typical patterns.

Finally, we will summarize our study and provide future work in

Section 4.

2 Methods

In our new likelihood, we will utilize the conditional density of

the spike train point process in a simplex domain [9]. We will at

first provide the basic framework.

2.1 Conditional densities for homogeneous
Poisson process in the simplex space

For a given spike train sss = (s1, s2, · · · , sk) in the time domain

[0,T], denote s0 = 0 and sk+1 = T. Using the notion of

the inter-spike intervals (ISI), this point process sequence can be

equivalently represented as a vector uuu = (u1, u2, · · · , uk+1)
T =

(s1 − s0, s2 − s1, · · · , sk+1 − sk)
T , where T indicates the transpose

operation. This ISI vector is in a simplex S
k+1 in R

k+1, where

S
k+1 =

{
uuu = (u1, u2, · · · , uk+1)

T |
∑k+1

i=1 ui = T, ui > 0, i =

1, · · · , k+ 1
}
.

By applying the Isometric LogRatio (ILR) transformation

[10], the ISI vector is mapped from the simplex S
k+1 to an

unconstrained Euclidean space R
k. Specifically, for any uuu =

(u1, u2, · · · , uk+1)
T ∈ S

k+1,

uuu∗ = ilr(uuu) = 9 ·
(
log

u1

g(uuu)
, log

u2

g(uuu)
, · · · , log

uk+1

g(uuu)

)T
,

where g(uuu) is the geometric mean of uuu, and 9 ∈ R
k×(k+1)

represents the ILR transform matrix. This matrix satisfies two

conditions: 1) 99
T = Ik, and 2) 9

T
9 = Ik+1 −

1
k+1

1k+11
T
k+1

,

where Ik ∈ R
k×k is the identity matrix and 1k+1 is a column vector

of ones inRk+1. We point out that this transformation is a bijection

between S
k+1 and R

k, and its inverse takes the following form:

uuu = ilr−1(uuu∗) = T
exp (u∗u∗u∗T9)

T

exp(u∗u∗u∗T9)111k+1
.

In this section, we will focus on the distribution of uuu∗ ∈ R
k

from spike trains following a homogeneous Poisson process (HPP).

As pointed out in Qi et al. [6], given the cardinality k, the ISI of

an HPP is uniformly distributed on the simplex space S
k+1 and

its density function has the form fuuu|k(uuu|k) = k!
Tk . By applying the

change-of-variable technique, the density function of uuu∗ can be

written as follows:

fuuu∗|k(uuu
∗|k) =

ck

(
∑k+1

p=1 e
∑k

i=1 u
∗
i 9i,p )k+1

, (2)

where ck is the normalizing constant for the density.

It was shown in Zhou et al. [9] that the conditional density

function in Equation (2) owns important and desirable properties:

(1) the density is log-concave and uni-modal, and (2) the density

has a symmetry with respect to the origin in a simplex. These

properties make this density analogous to a multivariate normal

distribution, which is ideal for a center-outward rank on the

observed data. Our new rank-based model on the point process will

be based on this conditional density function.

2.2 Rank-based likelihood on
homogeneous Poisson process

In this subsection, we will formally define the joint likelihood of

the ILR-transformed ISI for an HPP. This new likelihood is referred

to as the rank-based likelihood.

To compute the joint density function of the ILR-transformed

homogeneous Poisson process, we can decompose it as a product of

the conditional density function and the marginal density function.

That is, for any given spike train sss = (s1, s2, · · · , sk) in the time

domain [0,T], and uuu∗ ∈ R
k as the ILR transformation of the ISI of

sss, the joint likelihood function of uuu∗ can be written as:

fuuu∗ (uuu
∗) = fuuu∗|k(uuu

∗|k) · P(|uuu∗| = k). (3)
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By using the one-to-one mapping between the spike train sss and

the ILR-transformed vector uuu∗, the conditional density function

in Equation (2) can be re-described using sss as: fuuu∗|k(uuu
∗|k) =

ck
Tk+1

∏k+1
i=1

(
si − si−1

)
(see detailed derivation in Zhou et al. [9]). In

addition, the spike train sss and the ILR-transformed vector uuu∗ must

have the same cardinality. Hence P(|uuu∗| = k) = P(|sss| = k), which

is the probability of observing k events in the original HPP space.

It is well known that in an HPP with constant rate λ, the number

of events in any interval of length T would be a Poisson random

variable with mean λT, and then the probability of this HPP has k

events is P(|sss| = k) = e−λT (λT)k

k!
. Therefore, the likelihood of uuu∗ can

be expressed as:

fuuu∗ (uuu
∗) = fuuu∗|k(uuu

∗|k) · P(|sss| = k)

=
ck

Tk+1

k+1∏

i=1

(
si − si−1

)
e−λT(λT)k

k!
.

(4)

In this paper, we call this likelihood as the rank-based likelihood

of the original spike train sss. Its formal definition is given as follows:

Definition 2.1. Let sss = (s1, s2, · · · , sk) be a realization of a

homogeneous Poisson process on [0,T] with constant rate λ > 0.

Denote s0 = 0 and sk+1 = T. Then the rank-based likelihood of sss is

defined as:

L(sss) =
ck

Tk+1

k+1∏

i=1

(
si − si−1

)
e−λT(λT)k

k!
, (5)

where ck is the normalizing constant given in Equation (2).

As opposed to the traditional likelihood of a spike train in a

homogeneous Poisson process where the number of events is the

only factor considered, the temporal distribution of the events plays

a crucial role in determining the rank-based likelihood of the spike

train.

For each given cardinality k, it is easy to see that the likelihood

can attain its maximum value when the ISI is a constant vector uuu =

( 1
k+1

T, · · · , 1
k+1

T). In this case, all spike times are 1
k+1

T, 2
k+1

T, · · · ,

and k
k+1

T, which uniformly distribute on [0,T] and properly

indicate the homogeneous pattern in the data. This result shows

that the newly derived likelihood function can be used to rank a

homogeneous Poisson process in any given cardinality.

HPP Outlier Detection: For outlier detection in a

homogeneous Poisson process, we will need to incorporate

both the cardinality and the distribution of events into the

identification. We can slightly modify the newly defined likelihood

calculation by normalizing the conditional density by its maximum

value within each respective cardinality. This modified likelihood

function on a process sss with k events is given by:

L̃(sss) =
(k+ 1)k+1

T

k+1∏

i=1

(
si − si−1

)
e−λT

λ
k

k!
. (6)

2.3 Extension to general point process

In this subsection, we will extend the rank-based likelihood for

homogeneous Poisson process to general point process spike trains.

In this paper, we propose to achieve this goal by transforming

the general point process into a homogeneous Poisson process

using the classical Time-Rescaling (TR)method [3]. The TRmethod

allows any point process to be transformed into a homogeneous

Poisson process as long as the conditional intensity function is

known (or can be estimated). Based on this method, we propose

to define the rank-based likelihood for a general point process

that utilizes such transformation. This definition allows for the

computation of the rank-based likelihood in a feasible way by

taking advantage of the simplified structure of the homogeneous

Poisson process. Our definition is formally given as follows:

Definition 2.2. Let sss = (s1, s2, · · · , sk) be a realization of a general

point process on [0,T] with k time events. Denote s0 = 0 and

sk+1 = T. If the conditional intensity function λ
∗ is given and

the cumulative function 3
∗(t) =

∫ t
0 λ

∗(u)du, t ∈ [0,T], then we

can transform sss to 3
∗(sss) = (3∗(s0),3

∗(s1), · · · ,3
∗(sk+1)) via the

time-rescaling transformation. Denote uuu∗ = (u∗1 , u
∗
2 , · · · , u

∗
k+1

)T

as the ILR transformation of the ISI uuu = (u1, u2, · · · , uk+1)
T =(

3
∗(s1)−3

∗(s0),3
∗(s2)−3

∗(s1), · · · ,3
∗(sk+1)−3

∗(sk)
)T
. Then

the rank-based likelihood of sss conditioned on its cardinality is

defined as:

L(sss | |sss| = k) =
ck

3∗(T)k+1

k+1∏

i=1

(3∗(si)− 3
∗(si−1)), (7)

where ck is the normalizing constant given in Equation (2).

We point out that the above definition is only for the

conditional likelihood because a general form of the marginal

distribution on the number of events for a general point process

is not available. However, if we only focus on the center-outward

rank within the same cardinality, there is no need to calculate such

marginal likelihood.

One commonly used special case is the inhomogeneous Poisson

process (IPP). In this case, the conditional intensity is deterministic

and can be written as λ
∗(t) = λ(t). Let the cumulative intensity

3(t) =
∫ t
0 λ(u) du, t ∈ [0,T]. Then the number of events in [0,T]

follows a Poisson distribution with mean 3(T). The probability of

this process having k events is given by P(|sss| = k) = e−3(T)(3(T))k

k!
.

Therefore, the likelihood of an inhomogeneous Poisson process sss

with k spikes can be expressed as:

Lsss(sss) = fuuu∗|k(uuu
∗|k) · P(|sss| = k)

=
ck

3(T)k+1

k+1∏

i=1

(3(si)− 3(si−1))
e−3(T)(3(T))k

k!
.

(8)

IPP outlier detection: Similar to the HPP case, for outlier

detection in an IPP, we also need to incorporate both the cardinality

and the distribution of events into the identification. This is done

by normalizing the conditional density with its maximum value for

each cardinality. The modified likelihood function for a process sss

with k events is given by:

L̃(sss) =
(k+ 1)k+1

3(T)

k+1∏

i=1

(
3(si)− 3(si−1)

)
e−3(T)

k!
. (9)
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FIGURE 1

Comparisons of proposed and likelihoods in the ranking of Poisson process. (A) HPP K=4. (B) HPP across K. (C) IPP K=12. (D) IPP across K.

FIGURE 2

Real experimental data, where the top panels are for Cell 1, and the bottom ones are for Cell 2. (A) 10 example spike trains generated from each type

of arm movement, with four distinct colors (blue, red, green, and cyan) representing four types of arm movements and associated spiking activities.

Each thin vertical line indicates the time of a spike, and one row is for one trail; (B) Estimated intensity function; (C) Identified outliers using the

proposed likelihood.

2.4 Illustrations

In this section, we will illustrate the usage of the proposed

likelihood for ranking and outlier detection in simulated spike

trains. We at first generate 5000 realizations on [0, 1] from a

homogeneous Poisson process with a constant rate of 5. For

illustrative purposes, the ranking results with a cardinality of 4 are

shown in Figure 1. There are three rows in this panel: the first row

shows the constant intensity, and the second and third rows show

observations with top and bottom 5 likelihoods in Equation (5). It

is apparent that the spikes in the top observations are uniformly

distributed, indicating a typical homogeneous pattern, whereas

the spikes in the bottom observations appear outliers from the

homogeneity. We emphasize that such ranking cannot be obtained

with the classical likelihood method as all observations with

cardinality 4 will have equal likelihood values.

Based on Equation (6), we display the outliers (observations

with 5 lowest modified likelihood values) in the first row of

Figure 1B. These spike trains clearly do not exhibit a homogeneous

pattern. In contrast, we display spike trains with 5 lowest classical

likelihoods in the second row. These trains all have only 1 spike.

These single-spike trains properly address the outlier type on the

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2024.1349665
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ma and Wu 10.3389/fams.2024.1349665

number of events, whereas they cannot capture the outliers with

respect to the distribution of events.

We then generate 5,000 inhomogeneous Poisson process

realizations on [0, 1] from the intensity function λ(t) = 3e3t

(exponentially increasing from 0 to 1), and the result for the

cardinality being 12 is shown in Figure 1C. There are also 3 rows

in this panel: the first row shows the intensity function, and the

second row shows observations with the top five new likelihoods

(left) in Equation (8) and classical likelihoods (right), respectively.

We can see that the top spike trains using the new likelihood

better represent intensity function than those using the classical

likelihood. The third row in the panel shows observations with the

bottom 5 new likelihoods (left) and classical likelihoods (right),

respectively. In this case, both outlier groups exhibit different

patterns from the intensity function.

We finally show the result across different cardinalities in the

same inhomogeneous Poisson process realizations. In Figure 1D,

we find the spike trains with top (upper row) and bottom (lower

row) 5 modified likelihood estimations using Equation (9). We can

also see that the typical spike trains (with high likelihoods) well

capture the variability in intensity function, and the outliers (with

low likelihoods) clearly exhibit discrepancy from the intensity.

3 Experimental results

In this section, we demonstrate the proposed new likelihood

in a real experimental recording in the motor cortex, previously

used in [11]. Spiking activity was recorded using a microelectrode

array in the arm area of the primary motor cortex in a Macaque

monkey. The monkey was trained to move a cursor to targets via

contralateral armmovements in the horizontal plane by conducting

a Squared-Path task. That is, in each trial, the monkey can start in

any of the four corners and move in a counterclockwise direction

to finish a square-shaped movement.

In each starting corner, the monkey conducted 60 trials of

movement, and we have 240 trials in total in 4 different classes.

10 example spike trains of 2 typical cells in each starting point are

shown in Figure 2 (left column). We take 20 trials in each class

as the training data. The intensity in each class of each cell can

be estimated via conventional kernel methods, and the result is

shown in Figure 2B (middle column). For evaluating classification

performance, we used the other 40 spike trains in each class as test

data. The classification accuracy using the conventional likelihood

method was 0.856 for Cell 1 and 0.831 for Cell 2. Using our

new likelihood method, we achieved classification accuracies of

0.806 for both Cell 1 and Cell 2, comparable to those of the

conventional likelihood. However, we employ the normalized rank-

based likelihood. We find one outlier spike in Classes 1 and 4

for Cell 1 and one outlier spike in Class 4 for Cell 2, as depicted

in Figure 2C (right column). After removing these outliers, we

conducted the classification again and found the accuracies

increased to 0.816 (Cell 1) and 0.811 (Cell 2), respectively. The

findings demonstrate that our newly proposed likelihood method

is effective in removing outliers, leading to an improvement in

classification results when these outlier observations are excluded.

Such outlier detection analysis cannot be accomplished under

classical point process frameworks.

4 Discussion and future work

We have proposed a new rank-based likelihood that

successfully indicates the centrality for observed spike trains

for a given cardinality. Furthermore, we extend this rank-based

likelihood to incorporate the cardinality and distribution of spikes

to identify outliers. We have demonstrated the effectiveness of

the new framework using simulations and real spike trains under

the Poisson process assumption. In the future, we will extend this

framework to more practical history-dependent point processes,

such as a Hawks process. We will also explore the new method to

conduct more useful applications, such as clustering and robust

visualizations.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: the dataset is available upon request. Requests

to access these datasets should be directed to WW, wwu@fsu.edu.

Author contributions

YM: Writing – original draft, Writing – review & editing. WW:

Writing – original draft, Writing review & editing.

Funding

The author(s) declare that no financial support was

received for the research, authorship, and/or publication of

this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2024.1349665
mailto:wwu@fsu.edu
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Ma and Wu 10.3389/fams.2024.1349665

References

1. Perkel DH, Gerstein GL, Moore GP. Neuronal spike trains and stochastic
point processes: II. simultaneous spike trains. Biophys J. (1967) 7:419–40.
doi: 10.1016/S0006-3495(67)86597-4

2. Richmond BJ, Optican LM, Spitzer H. Temporal encoding of two-dimensional
patterns by single units in primate primary visual cortex. I Stimulus-response relations.
J Neurophysiol. (1990) 64:351–69. doi: 10.1152/jn.1990.64.2.351

3. Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM. The time-rescaling
theorem and its application to neural spike train data analysis. Neural Comput. (2002)
14:325–46. doi: 10.1162/08997660252741149

4. Eden UT, Frank LM, Barbieri R, Solo V, Brown EN. Dynamic analysis of neural
encoding by point process adaptive filtering. Neural Comput. (2004) 16:971–98.
doi: 10.1162/089976604773135069

5. Liu S, WuW. Generalized mahalanobis depth in point process and its application
in neural coding. Ann Appl Statist. (2017) 2017:992–1010. doi: 10.1214/17-AOAS1030

6. Qi K, Yang C, Wu W. Dirichlet depth for point process. Electron J Stat. (2021)
15:3574–610. doi: 10.1214/21-EJS1867

7. Xu Z, Wang C, Wu W. A unified framework on defining depth for point
process using function smoothing. Comput Statist Data Analy. (2022) 175:107545.
doi: 10.1016/j.csda.2022.107545

8. Aitchison J, Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V.
Logratio analysis and compositional distance. Mathemat Geol. (2000) 32:271–5.
doi: 10.1023/A:1007529726302

9. Zhou X, Ma Y, Wu W. Statistical depth for point process via the
isometric log-ratio transformation. Comput Statist Data Analy. (2023) 187:107813.
doi: 10.1016/j.csda.2023.107813

10. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-
Vidal C. Isometric logratio transformations for compositional data
analysis. Math Geol. (2003) 35:279–300. doi: 10.1023/A:102381
8214614

11. Wu W, Srivastava A. An information-geometric framework for statistical
inferences in the neural spike train space. J Comput Neurosci. (2013) 31:725–48.
doi: 10.1007/s10827-011-0336-x

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2024.1349665
https://doi.org/10.1016/S0006-3495(67)86597-4
https://doi.org/10.1152/jn.1990.64.2.351
https://doi.org/10.1162/08997660252741149
https://doi.org/10.1162/089976604773135069
https://doi.org/10.1214/17-AOAS1030
https://doi.org/10.1214/21-EJS1867
https://doi.org/10.1016/j.csda.2022.107545
https://doi.org/10.1023/A:1007529726302
https://doi.org/10.1016/j.csda.2023.107813
https://doi.org/10.1023/A:1023818214614
https://doi.org/10.1007/s10827-011-0336-x
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A novel point process model for neuronal spike trains
	1 Introduction
	2 Methods
	2.1 Conditional densities for homogeneous Poisson process in the simplex space
	2.2 Rank-based likelihood on homogeneous Poisson process
	2.3 Extension to general point process
	2.4 Illustrations

	3 Experimental results
	4 Discussion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


