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Model-based statistical depth for matrix data
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The field of matrix data learning has witnessed signif-
icant advancements in recent years, encompassing diverse
datasets such as medical images, social networks, and per-
sonalized recommendation systems. These advancements
have found widespread application in various domains, in-
cluding medicine, biology, public health, engineering, fi-
nance, economics, sports analytics, and environmental sci-
ences. While extensive research has been conducted on es-
timation, inference, prediction, and computation for ma-
trix data, the ranking problem has not received adequate
attention. Statistical depth, a measure providing a center-
outward rank for different data types, has been introduced in
the past few decades. However, its exploration has been lim-
ited due to the complexity of the second and higher order-
statistics. In this paper, we propose an approach to rank ma-
trix data by employing a model-based depth framework. Our
methodology involves estimating the eigen-decomposition of
a 4th-order covariance tensor. To enable this process using
conventional matrix operations, we specify the tensor prod-
uct operator between matrices and 4th-order tensors. Fur-
thermore, we introduce a Kronecker product form on the
covariance to enhance the robustness and efficiency of the
estimation process, effectively reducing the number of pa-
rameters in the model. Based on this new framework, we
develop an efficient algorithm to estimate the model-based
statistical depth. To validate the effectiveness of our pro-
posed method, we conduct simulations and apply it to two
real-world applications: field goal attempts of NBA players
and global temperature anomalies.

Keywords and phrases: Matrix data, Data depth, Co-
variance tensor, Eigen-decomposition.

1. INTRODUCTION

Matrix data has garnered significant interest in various
applications, such as brain imaging studies [15], environmen-
tal science [11] and sports analytics [36]. The rapid develop-
ment in this field has led to numerous challenges in estima-
tion, inference, prediction, and computation when dealing
with matrix data. One prominent example of matrix data
can be found in environmental studies, where measurements
of interest, such as temperature, humidity, or air quality, are
recorded across a range of spatial locations. Additionally,
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heat maps illustrating the locations of field goal attempts
on a basketball court or indicators of player effectiveness in
different areas of a football pitch can also be represented
as matrices, capturing the intensity of occurrences of the
target events within a spatial context. While there is rich
literature [4, 15, 18, 25, 35, 40] that extensively discusses
regression models for matrix response data using paramet-
ric or nonparametric approaches, relatively less attention
has been given to the ranking of such data.

Statistical depth is a concept used in data analysis to as-
sess the centrality or outlyingness of a data point within a
dataset or with respect to a given probability distribution.
It quantifies how deep a point is relative to the other points
in the dataset. Essentially, it provides a way to rank data
points based on their relative centrality. In the context of
matrix data, which involves complex structures with multi-
ple dimensions, using statistical depth allows us to evaluate
the significance or centrality of a particular matrix within
a set of matrices. This can be crucial in applications like
image processing, where we want to identify the most rep-
resentative or characteristic images in a collection. Over the
past few decades, numerous methods of data depth have
been proposed for multivariate data, including the halfspace
depth [34], simplicial depth [20], projection depth [41], Ma-
halanobis depth [21], and majority depth [31]. Based on the
definitions of depth for data in Euclidean space, researchers
have also explored depths in other spaces. or instance, the
concept of halfspace depth has been extended to arbitrary
metric spaces [7]. Functional data analysis is widely ap-
plied in fields like medicine, biology, and engineering, where
the notion of statistical depth has been extended to func-
tional data for tasks such as center-outward ranking, outlier
detection, and classification. Related studies include band
depth [22], half-region depth [23] and extremal depth [28].
However, these methods primarily focus on univariate func-
tional data, which are curves in R

2 space. While additional
depth methods have been developed for curves in higher-
dimensional spaces Rp, where p ≥ 3, such as multivariate
band depth [16], simplicial band depth [24] and multivari-
ate functional halfspace depth [6]), the analysis of depth for
matrix data or image data, which represent surfaces in R3,
remains insufficiently explored.

In this article, we consider the binary function space
L 2

(
[0, 1] × [0, 1]

)
, any f ∈ F is written as f(t),

t ∈ [0, 1] × [0, 1] or f(t1, t2), t1, t2 ∈ [0, 1]. This space is
commonly used in biomedical studies and environmental
science. Recently, a model-based statistical depth approach
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was proposed based on functional principal component
analysis and reproducing kernel Hilbert space norm
[39]. The key step in this approach involves conducting
eigen-decomposition using a covariance operator. While
the eigen-decomposition procedure is straightforward for
univariate curve data, it becomes more challenging for
matrix data, where the covariance operator is represented
by a 4th-order tensor. To the best of our knowledge, there
are no well-established methods for eigen-decomposition
of a 4th-order tensor to estimate pairs of eigenvalues and
eigen-matrices. The well-known higher-order singular value
decomposition (HOSVD) for tensors in R

n1×···×nd [8, 38],
computes the singular value decomposition (SVD) for each
mode-k unfolding, resulting in a Tucker decomposition form.
In this form, a core tensor is multiplied by a matrix for every
mode, allowing for a compact representation of the tensor.
However, it’s important to note that the HOSVD does not
generate pairs of eigenvalues and eigen-matrices. Another
widely used tensor decomposition method is the Canonical
Polyadic (CP) decomposition, also known as PARAFAC
[2, 12]. This method expresses a tensor as the sum of
rank-one tensors, where each rank-one tensor is formed by
taking the outer product of vectors along each mode. The
CP decomposition is a powerful tool for approximating
high-order tensors and extracting interpretable patterns.
However, similar to the HOSVD, the CP decomposition
does not directly provide eigenvalues and eigenvectors for
a 4th-order tensor. Other multivariate functional principal
component analysis methods focus on the functions in the
form of (f1, . . . , fp) [1, 5, 19], where each observation is
a vector of p functions (p curves), and do not decompose
4th-order tensors. In this paper, we introduce a rigorous
framework to address this issue by utilizing an isomorphic
mapping to convert a 4th-order tensor into a matrix.

The second challenge lies in the robustness of the
estimation. Matrix data often involves a large number of
parameters in the 4th-order tensor, and a robust procedure
is desirable to avoid overfitting problems. We propose using
the Kronecker product covariance structure in our estima-
tion procedure to reduce the number of parameters. Building
upon this robust eigen-decomposition, we present an effi-
cient algorithm for estimating the model-based statistical
depth [39] for functional data in the space L 2

(
[0, 1]×[0, 1]

)
.

We demonstrate the effectiveness of the proposed method
using simulations and real world data, comparing it with
benchmark methods for bivariate data, such as modified
band depth [22] and modified half-region (HR) depth [23].

The structure of this paper is as follows. In Section 2 we
briefly review the definitions of tensor product operator and
covariance operator [13]. We then specify the tensor product
between matrices and tensors and use it to determine the
discretized form of the covariance operator. In Section 3, we
describe the estimation of such covariance operator using the
Kronecker product [33]. We proceed to discuss the model-
based depth [39] for bivariate functional data or matrix data.

Section 4 illustrates simulation results and real-world data
analysis. Finally, Section 5 provides related discussions and
outlines avenues for future research.

2. THEORY ON TENSOR PRODUCT
OPERATORS

In order to adopt the model-based depth to rank 2-
dimensional objects, we need to have a proper estimation of
eigenvalues and eigenfunctions from a 4th-order covariance
tensor. In this section, we will provide a rigorous frame-
work to define the tensor operator and robustly estimate
the eigen-decomposition.

2.1 Basic definitions on tensor product
operator

At first, we review the general notion of tensor product
operators in the Hilbert space adopted from [13] and then
illustrate its simple discrete form in Euclidean space R

p

Definition 2.1. Let x1, x2 be elements of Hilbert spaces H1

and H2, respectively. The tensor product operator (x1 ⊗1

x2) : H1 �→ H2 is defined by

(1) (x1 ⊗1 x2)y = 〈x1, y〉1x2

for y ∈ H1, where 〈·, ·〉1 is the inner-product operation in H1.
If H1 = H2 we use ⊗ in lieu of ⊗1.

Let Z = {Z(t) : t ∈ E} be a stochastic process on
a probability space (Ω,F ,P), where E is a general com-
pact metric space. We then adopt some definitions in [13].
The mean function of the process Z is m(t) = E[Z(t)], and
the covariance function (or covariance kernel) is K(s, t) =
Cov(Z(s), Z(t)).

Suppose the mean function and the covariance function
of Z are well defined and continuous, we define an integral
operator in L 2(E,B(E), μ)

(2) (K f)(s) =

∫
E

K(s, t)f(t)dμ(t),

where μ is a finite measure. Then K is the covariance op-
erator of Z. If we furthermore assume Z = {Z(t) : t ∈ E}
is jointly measurable with mean zero, then Z is viewed as
a random element in some Hilbert space HZ . The covari-
ance operator E(Z ⊗ Z) is well defined and coincides with
the operator K in Equation (2). Suppose λ ∈ R is a eigen-
value of K and f ∈ L 2(E,B(E), μ) is the corresponding
eigenfunction; that is,

K f = λf,

which is equivalent to

(3)

∫
E

K(s, t)f(t)dμ(t) = λf(s)

When the two Hilbert spaces are conventional finite-
dimensional Euclidean spaces Rp1 and R

p2 , respectively, the
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inner product is the classical operation between two vectors.
Then (x1 ⊗1 x2)y = 〈x1, y〉1x2 = x2(x

�
1 y) = (x2x

�
1 )y, and

hence, (x1 ⊗1 x2) = x2x
�
1 for xi ∈ R

Pi . If x ∈ R
p is a ran-

dom variable, The covariance operator E(x⊗ x) is actually
Cov(x). Consider E = [0, 1] and Z = {Z(t) : t ∈ E} is
a stochastic process with good properties as we mentioned
before. Suppose z is the discretized form of Z(t), then the
sample covariance Ŝ can be used to estimate the covariance
operator of Z. If μ is the counting measure in Equation (2),
both K and K(s, t) are discretized to Ŝ, so the eigenvalue
of Ŝ coincides λ in (3) and the correponding eigenvector of
z is an estimation of the eigenfunction of K .

2.2 Tensor product operator for matrix data

We now consider E = [0, 1]× [0, 1] and study tensor op-
erator for matrices. In this case, the two Hilbert spaces,
H1 = R

p×q and H2 = R
r×s for some finite positive inte-

gers p, q, r, s ≥ 2, are equipped with Frobenius norms ‖ · ‖1,
‖ · ‖2 and Frobenius inner products 〈·, ·〉1, 〈·, ·〉2, respec-

tively. For A,B ∈ Hk, ‖A‖k =
√∑

i,j A
2
ij =

√
tr(A�A),

〈A,B〉k = tr(A�B) =
∑

i,j AijBij = vec(A)� vec(B),
k = 1, 2. The covariance for random matrix is a tensor of
order 4. To understand tensor operation, we should define
a multiplication between a 4th-order tensor and a matrix
with proper dimensions.

Definition 2.2. Let W ∈ R
r×s×p×q and A ∈ R

p×q. The
tensor-times-matrix multiplication · is defined by

(4) (W ·A)ij = 〈W ij··, A〉F ,

where 〈·, ·〉F is Frobenius inner product. The product W ·A
is in R

r×s.
This multiplication is extended to the tensor-times-tensor

case. Let A ∈ R
p×q×r×s and B ∈ R

r×s×u×v. Then

(5) (A ·B)ijkl = 〈Aij··, B··kl〉F .

Remark 2.1. 1. These two multiplication rules imitate
the common matrix-times-vector and matrix-times-
matrix multiplications, respectively.

2. For I ∈ R
p×q×p×q, let Iijkl = 1 if i = k, j = l, and

Iijkl = 0 otherwise. Then I is the identity tensor. It
is easy to show that I ·A = A for A ∈ R

p×q, I ·A = A
for A ∈ R

p×q×r×s and A · I = A for A ∈ R
r×s×p×q.

W · A can be regarded as an operator W acts on a ma-
trix A. Suppose that X ∈ R

p×q, Z ∈ R
r×s are two matri-

ces. The tensor product operator (X ⊗1 Z) is a 4th-order
tensor W ∈ R

r×s×p×q such that W ijkl = ZijXkl. With
the specific form of tensor product operator, the covariance
tensor of a random matrix X ∈ R

p×q with mean zero is
Σ = Cov(X) := E(X ⊗X) ∈ R

p×q×p×q.
The practical eigen-decomposition has only been defined

on a matrix form (i.e., the classical singular value decompo-
sition). To apply eigen-decomposition to a tensor, we need
to develop methods to convert a 4th-order tensor into a 2nd-
order, yet much larger matrix. Matricization is a commonly

used technique to analyze tensor data, which is summarized
in [17]. Now we consider the metric space E = [0, 1]× [0, 1].
A stochastic process Z = Z(t1, t2), (t1, t2) ∈ [0, 1]× [0, 1] has
a discrete matrix form X ∈ R

p×q. The covariance tensor of
X is defined as follows.

Definition 2.3. Suppose X ∈ R
p×q is a random matrix

with mean zero. Then the covariance tensor of X is Σ =
Cov(X) := E(X ⊗X) ∈ R

p×q×p×q.

Since the covariance operator E(Z ⊗ Z) coincides with
the operator K in Equation (2), the covariance tensor of
X, Σ = E(X ⊗ X) in Definition 2.3, is the discrete form
of the operator K . If we consider the covariance function
K(s, t) = Cov(Z(s), Z(t)), Σ = Cov(X) is also the discrete
form of K(s, t). If μ is the counting measure in Equation (2),
both K and K(s, t) are discretized to Σ and f is discretized
to a matrix A, we see both side of Equation (2) are Σ · A,
where the multiplication · is defined in Definition 2.2. Hence,
K and K(s, t) have the same discrete representation.

If we further discretize K(s, t) and f(t) in Equation (3)
and let μ be the counting measure, we have Σ · A = λA for
λ ∈ R. That is, we use the eigenvector (or eigenmatrix) of
the covariance tensor Σ (with respect to X) to estimate the
eigenfunction of the covariance operator K or the covari-
ance function K(s, t) (with respect to Z(t)). In addition, the
eigenvalue of Σ is the same as the eigenvalue of K orK(s, t).
In the following content, we discuss how to estimate the co-
variance tensor Σ given bivariate discretized functional data
{Xi(t), t ∈ [0, 1]× [0, 1], i ∈ {1, . . . , n}} and to calculate the
eigenvalue and the eigenmatrix of Σ.

We have shown that the tensor product operator of two
matrices is a 4th-order tensor. However, it is still not ready
to apply eigen-decomposition to a tensor, because the prac-
tical eigen-decomposition has only been defined on a matrix
form (i.e., the classical singular value decomposition). To
achieve that goal, we need to develop methods to convert
a 4th-order tensor into a 2nd-order, yet much larger ma-
trix. The next definition forms a matrix row by row. We
will show that it has many good properties to obtain eigen-
decomposition in a 4th-order tensor.

Definition 2.4. Let W ∈ R
r×s×p×q. mat(W ) is a matri-

cization of W in the following row-by-row form:

mat(W ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vec(W 11··)
�

vec(W 21··)
�

...

vec(W r1··)
�

vec(W 12··)
�

vec(W 22··)
�

...

vec(W r2··)
�

...

vec(W 1s··)
�

...

vec(W rs··)
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Based on Definition 2.4, we will show several important
properties of the matricization mat(·). At first, we point out
the identity term:

Proposition 2.1. Let Ip×q×p×q be the identity tensor in
R

p×q×p×q. Then mat(Ip×q×p×q) = Ipq, i.e., mat(Ip×q×p×q)
is the identity matrix in R

pq×pq.

Now we focus on vectorization operation on the product
of a tensor and a matrix, which is crucial for the eigen-
decomposition. Suppose W ∈ R

r×s×p×q and A ∈ R
p×q.

Then it is easy to see

(6) vec(W ·A) = mat(W ) vec(A).

As we mentioned before, the eigenvalue and the eigen-
function of the covariance operator K of bivariate function
Z(t), t ∈ [0, 1] × [0, 1] can be estimated by the eigenvalue
and the eigenmatrix of the covariance tensor of the cor-
responding random matrix X, respectively. Based on (6),
we can easily obtain eigenvalue and eigenvector in the ma-
tricization form of a 4th-order tensor. This is given in the
following proposition:

Proposition 2.2. Suppose W ∈ R
p×q×p×q and A ∈ R

p×q.
Then for λ ∈ R, W ·A = λA if and only if mat(W ) vec(A) =
λ vec(A).

We can easily prove that mat(·) is a linear isomorphism
from R

r×s×p×q to R
rs×pq, where r, s, p, q are any positive

integers. We focus back on the covariance of a random ma-
trix. The following proposition gives the matricization of a
covariance tensor.

We then examine the algebraic properties of the ma-
tricization operator mat. mat is a linear isomorphism be-
tween 4th-order tensors and 2-d order matrices. It is easy
to verify that mat(W1 + W2) = mat(W1) + mat(W2) and
mat(cW1) = cmat(W1) for any W1,W2 ∈ R

r×s×p×q and
c ∈ R, so mat is a linear transformation between two vec-
tor spaces Rr×s×p×q and Rrs×pq. Next, we focus on group
isomorphism between G(p, q) = {A ∈ R

p×q×p×q|mat(A) is
nonsingular} and the general linear group GL(pq) = {A ∈
R

pq×pq|A is nonsingular}. The following proposition show
that mat maps products in G(p, q) to products in GL(pq).

Proposition 2.3. mat(A · B) = mat(A)mat(B) for any
A ∈ R

p×q×r×s, B ∈ R
r×s×u×v, where p, q r, s, u, v are any

positive integers.

Therefore, (G(p, q), ·) is a group with identity element
Ip×q×p×q, and the inverse element of A, denoted as A−1,

satisfies mat(A−1) = mat(A)−1. As a result, we obtain that
(G(p, q), ·) isomorphic to the general linear group with de-
gree pq.

Based on the definition of the covariance tensor of ran-
dom matrix (Definition 2.3) as well as the developed theory
on tensor matricization (Proposition 2.2), we are ready to
show the calculation procedure for the eigenvalues and the
eigenvectors of a covariance tensor. The following proposi-
tion gives the matricization of a covariance tensor.

Proposition 2.4. Suppose X ∈ R
p×q is a random matrix,

then Cov(vec(X)) = mat(Cov(X)).

Given a p×q random matrix X with covariance tensor Σ.
Then by Proposition 2.4, Cov(vec(X)) = mat(Σ); that is,
we estimate the covariance matrix of vec(X) instead of Σ.
Let Ŝ be the estimated Cov(vec(X)), since mat is a lin-
ear isomorphism between 4th-order tensors and matrices,
there is an unique Σ̂ such that Σ̂ = mat−1

2 (Ŝ). According
to Proposition 2.2, we can conduct eigen-decomposition to
Ŝ directly. If Ŝa = λa with λ ∈ R and a ∈ R

pq, then λ is
also the eigenvalue of Σ̂. Let A be the inverse of the vector-
ization of a; that is, A = vec−1(a) ∈ R

p×q. Then A is the
eigenmatrix of Σ̂, i.e., Σ̂ ·A = λA.

In summary, this section establishes the foundation for
the estimation and the matricization of covariance ten-
sor, it also shows the eigen-decomposition approach for a
4th-order tensor. Actually, Definition 2.2 (the tensor-times-
matrix multiplication) can be extended to higher order case.
For example, we can define the multiplication between a
6th-order tensor and a 3rd-order tensor in the similar way.
The covariance can also be specified for higher order ran-
dom tensors. Using the above theoretical construction, we
are ready to adopt the model-based method in [39] to esti-
mate the depth value of matrix data. In the next section,
we will propose a robust and efficient procedure to conduct
the eigen-decomposition.

3. COVARIANCE-BASED DEPTH
ESTIMATION

In this section, we address the calculation issue for covari-
ance estimation and then provide an algorithm to compute
the model-based depth for matrix data.

3.1 Estimation of Kronecker product
covariance

Suppose we have X1, X2, . . . , Xn ∈ R
p×q after discretiza-

tion. Our goal is to estimate the covariance matrix. How-
ever, as the size of the covariance matrix is pq × pq, it
usually contains too many parameters to estimate. Hence,
we propose to adopt the Kronecker product to simplify the
covariance, so that the estimated covariance has the form
Ŝ = P ⊗Kron Q where P ∈ R

p and Q ∈ R
q. Recent studies

have introduced the notion of matrix normal distribution
and proposed likelihood-based algorithms to estimate Kro-
necker product covariance [9, 33, 32]. Moreover, the tensor
normal distribution for a J-th order random tensor of di-
mensions p1 × · · · × pJ and its maximum likelihood estima-
tions are presented in [26].

Basically, a random matrix X ∈ R
p×q follows the matrix

normal distribution MN p×q(M,P,Q) if it has the proba-
bility density function

p(X|M,P,Q) =
exp(−1

2Tr[Q
−1(X −M)�P−1(X −M)])

(2π)pq/2|Q|p/2|P |q/2 ,
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where p, q are positive integers, M is p× q, P is p×p and Q
is q×q. M is expectation, P is among-row variance and Q is
among-column variance, P and Q are positive definite ma-
trices. An important property of matrix normal distribution
is that X ∼ MN p×q(M,P,Q) if and only if vec(X) has the
multivariate normal distribution Npq(vec(M), Q⊗Kron P ).

Let X1, . . . , Xn be independent and identically dis-
tributed from MN p×q(M,P,Q). The maximum likelihood

estimate (MLE) of M is simply the average M̂ = X̄ =
1
n

∑n
i=1 Xi. A flip-flop algorithm is proposed to calculate the

MLEs P̂ and Q̂ [33]. Let Yi = Xi − M̂, i ∈ {1, . . . , n}. At
first give the initial guesses such that P̂ (0), Q̂(0) are positive
definite and Qqq = 1, then update P̂ and Q̂ as follows

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̂ (k+1) =
1

qn

n∑
i=1

Yi(Q̂
(k))−1Y �

i ,

R̂(k+1) =
1

pn

n∑
i=1

Y �
i (P̂ (k))−1Yi,

Q̂(k+1) =
1

R̂
(k+1)
qq

R̂(k+1).

In practice we may choose identity matrices to be the initial
values P̂ (0) and Q̂(0), and the estimated P̂ and Q̂ are always
positive definite. Note that this flip-flop reduces the number
of parameters in covariance estimation, but it only works
well when the matrix size is not too large. If n > max{p, q},
the maximum likelihood estimate (7) has a unique solution
[33].

The estimated covariance matrix of {vec(Xi)}ni=1 is Ŝ =

Q̂⊗KronP̂ . Hence, we conduct SVD to Kronecker product co-
variance. Suppose Q̂ = UQDQV

�
Q and P̂ = UPDPV

�
P , then

Ŝ = Q̂⊗Kron P̂ = (UQ ⊗Kron UP )(DQ ⊗Kron DP )(VQ ⊗Kron

VP )
�. Given matrix data X1, X2, . . . , Xn ∈ R

p×q, every
function fi is discretely estimated by a p × q matrix. The
algorithm for applying principal analysis is shown in Algo-
rithm 1.

Algorithm 1 Principal Component Analysis for Matrix
Data

1. Apply the flip-flop algorithm (Equation (7)) to estimate
the matricized covariance tensor S for fi’s, find the Kronecker
product structure Ŝ = Q̂ ⊗Kron P̂ , where Q̂ is q × q and P̂ is
p× p;
2. Conduct SVD to Q̂ and P̂ separately, Q̂ = UQDQV

�
Q , P̂ =

UPDPV
�
P ;

3. Calculate D0 = DP ⊗KronDQ and U0 = UP ⊗KronUQ. Order
the diagonal entries of D0, denotes as d0i, i ∈ {1, . . . , n}, from
high to low, and arrange the columns of U0 in the same order
of d0i. Let D = reorder(D0), U = reorder(U0);
4. Reshape every columns of U , denoted as Ui, i ∈ {1, . . . , n},
into p× q matrices, φi = vec−1(Ui), i ∈ {1, . . . , n};
5. The covariance tensor is estimated by K̂(s1, s1, t1, t2) =∑W

w=1 dwφw(s1, s2)φw(t1, t2) for some W < n.

The Kronecker product covariance estimation greatly re-
duces the number of parameters; we estimate a p×p matrix
and a q × q matrix instead of estimating a pq × pq matrix.
On the other hand, applying SVD to Q̂ and P̂ separately
is more efficient than applying SVD to Q̂ ⊗Kron P̂ directly,
especially when p and q are large.

3.2 Model-based depth algorithm

In this subsection, we propose to use principal com-
ponent analysis to calculate statistical depths for matrix
data, where the covariance-based algorithms are devel-
oped to estimate norm-based statistical depth and inner-
product-based statistical depths for functional data [39].
Given n independent samples from finite-dimensional zero-
mean Gaussian process Z1, . . . , Zn on t ∈ [0, 1], and
an observed function Zobs. We first compute sample
mean function Z̄(t) = 1

n

∑n
i=1 Zi(t), empirical covariance

function K̃(s, t) = 1
n

∑n
i=1

[
Zi(s) − Z̄(s)

][
Zi(t) − Z̄(t)

]
,

and apply eigen-decomposition to covariance: K̃(s, t) =∑n
w=1 λ̂w,nφ̂w,n(s)φ̂p,n(t). Then we choose a number W < n

and estimate K̂(s, t) =
∑W

w=1 λ̂w,nφ̂w,n(s)φ̂w,n(t). Compute

Ẑw =
∫ 1

0
Zobs(t)φw,n(t)dt for w = 1, . . . ,W , and the in-

duced reproducing kernel Hilbert space norm ‖Zobs‖2HK̂
=∑W

z=1
Ẑ2

w

λ̂w,n
. The inner-product-based depth is calculated as

Dip(Zobs) = 1−Φ(‖Zobs‖HK̂
), where Φ(x) is the cumulative

distribution function standard normal distribution. The re-
producing kernel Hilbert space norm induced depth is cal-
culated as D = 1 − F (‖Zobs‖2HK̂

) where F (x) denotes the

cumulative distribution function of χ2(P ).
For matrix data, we propose to use Algorithm 1 to con-

duct eigen-decomposition, which implies that we use Kro-
necker product covariance estimation by Equation (7) in-
stead of sample covariance matrix. Different from the al-
gorithms in [39], discretization is a necessary step in our
algorithms for the bivariate estimation. This is because the
Kronecker product is only defined on the finite space and
the flip-flop algorithm can only be applied to matrices but
not functional data. Hence, we should first discretize func-
tional data into matrices in our algorithms. In practical use,
this is not a problem as observed data are already in discrete
forms.

Suppose we have n independent samples from finite-
dimensional zero-mean Gaussian process Z1, . . . , Zn on t ∈
[0, 1] × [0, 1], and an observed function Zobs. Suppose ev-
ery function is estimated by a p× q matrix, the algorithms
for estimating model-based statistical depths are shown as
follows.

Remark 3.1. For simplification, Algorithm 2 is only for
observations from Gaussian processes. In fact, the depth
estimation procedure for any second-order stochastic pro-
cess can be extended to bivariate data by using the flip-
flop algorithm. We only need to replace Step 4 or 4′ by a
bootstrapping procedure. The computational details on the
depth estimation part are found in [39].
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Algorithm 2 Model-Based Statistical Depth Estimation
Algorithm.

Input: observations {Z1, . . . , Zn}, any observation Zobs, a
threshold ε > 0.
1. Use Algorithm 1 to conduct eigen-decomposition, the co-
variance function is estimated by

K̂(s1, s1, t1, t2) =

W∑
w=1

dwφw(s1, s2)φw(t1, t2);

2. For w = 1, . . . ,W , Compute

Ẑw =

∫ 1

0

∫ 1

0

Zobs(t1, t2)φw(t1, t2)dt1dt2;

3. Compute the induced reproducing kernel Hilbert space norm

‖Zobs‖2H
K̂

=
∑W

w=1

Ẑ2
w

dw
;

4. (Inner-Product-Based Depth) Compute the depth as
Dip(Zobs) = 1 − Φ(‖Zobs‖H

K̂
),where Φ(x) denotes the cumu-

lative distribution function of a standard normal random vari-
able.
4′. (Reproducing Kernel Hilbert Space Norm-Based Depth)
Compute the depth as D = 1 − F (‖Zobs‖2H

K̂
), where F (x)

denotes the cumulative distribution function of χ2(W ). Hence,
the proposed model-based depth can be extended in higher
order spaces.

Remark 3.2. As we mentioned at the end of Section 2,
the covariance for higher order random tensor is also spec-
ified. The maximum likelihood estimations for covariance
under tensor normal distribution are given in [26]. Hence,
the proposed depth method can be adapted for higher order
data.

Step 4 and Step 4′ in Algorithm 2 present two differ-
ent model-based depth methods. The norm-based depth is
a generalization over various distance-based forms. In con-
trast, the inner-product depth is motivated with the classical
halfspace depth by Tukey [34]. The key differences between
these two methods are 1) norm-based depth depends on a
center, but inner-product-based depth is independent of it,
and 2) the inner-product-based depth is often meaningful for
a finite dimensional space only [39]. In practice, they usu-
ally yield similar results. However, Step 4 outperforms in
our numerical studies, and therefore only the results of re-
producing kernel Hilbert space norm-based depth are shown
in Section 4.

The value of W should be manually selected. One way is
to find a significant gap among singular values or a threshold
such as 95% for cumulative singular values in the classical
functional PCA framework. Algorithm 2 assumes zero-mean
Gaussian process. In practice, we need to centralize data
(i.e., subtract the sample mean) if necessary. Then the depth
values only depends on covariance.

4. NUMERICAL STUDIES

4.1 Simulations

We will use three simulated 2-dimensional image datasets
to illustrate the proposed depth method.

1. The first dataset setting is a sequence of discretized im-
ages of the noise-contained bivariate Gaussian probabil-
ity density functions on [−3, 3]× [−3, 3] with the same
covariance but different means. Let N(x, y | μ,Σ) de-
note the bivariate Gaussian density function with mean
μ and covariance Σ at (x, y)�. Each observation is a
31× 31 image In = {Inij}31i,j=1, n = 1, . . . , 50, given as:

Inij = 1000N(xi, yj | μn,Σ) + εi,j,n,

where xi = −3 + 0.2 ∗ (i − 1), yj = −3 + 0.2 ∗ (j −
1), μn = [−0.5 + 0.02(n − 1), 0]�,Σ =

[
1 0.5
0.5 1

]
, and

εi,j,n’s are independent and identically distributed from
N(0, 1), i, j = 1, . . . , 100, n = 1, . . . , 50. Three of the
observations (1st, 25th, and 50th) are shown in the left
column of Figure 1(a).

2. The second dataset setting is very similar to the first
one except that in this case the density functions have
the same mean but different covariances. Each observa-
tion is given as:

Inij = 1000N(xi, yj | μ,Σn) + εi,j,n,

where xi = −3+0.06∗(i−1), yj = −3+0.06∗(j−1), μ =
[0, 0]�,

Σi =

[
1 0.25− 0.01(i− 1)

0.25− 0.01(i− 1) 1

]
,

and εi,j,n’s are independent and identically distributed
from N(0, 1), i, j = 1, . . . , 100, n = 1, . . . , 50. Three of
the observations (1st, 25th, and 50th) are shown in the
left column of Figure 1(b).

3. The third dataset setting is a mixture of two bivariate
normal density functions. Each observation is given as:

300N(xi, yj | μ1,Σ1n) + 700N(x, y | μ2,Σ2n)) + εi,j,n,

where xi = −3 + 0.06 ∗ (i − 1), yj = −3 + 0.06 ∗
(j − 1), μ1 = [−1.5, 0]�, μ2 = [1.5, 0]�,Σ1n = (1 +
0.015(n − 1))[ 1 0.5

0.5 1 ], Σ2n = (1 + 0.015(i − 1))[ 2 −1
−1 2 ],

and εi,j,n’s are independent and identically distributed
from N(0, 1), i, j = 1, . . . , 100, n = 1, . . . , 50. Three of
the observations (1st, 25th, and 50th) are shown in the
left column of Figure 1(c).

For each dataset setting, we repeat simulation 100 times.
The dataset in every replica is the same except the noise
εi,j,n. In Simulation 1, the high density part moves along
the x-axis from left to right. This is well captured by the
proposed method with norm-based depth in Step 4′ of Al-
gorithm 2. The result is shown in the upper-right panel in
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Figure 1. Simulation result. (a), Three (1st, 25th, 50th) out
of 50 observations in Simulation 1 are shown in the left

column. The three panels on the right column show the depth
values in the given 50 observations using the proposed
norm-based method, modified band depth, and modified
half-region depth, respectively. (b) and (c), Same as (a)

except for Simulations 2 and 3, respectively.

Figure 1(a), where the depth value increases from left to
the middle part, and then decreases from the middle to the
right. The peak is at around 25th observations. Similar re-
sult can be obtained if instead we use the inner-product-
based depth in Step 5 of Algorithm 2 and is omitted here.
In comparison, we also apply the modified band depth [22]
and modified half-region (HR) depth [23] to this dataset and
calculate their depth values. The result is shown on the bot-
tom two panels in the right column of Figure 1(a). Similar
trend is observed in the modified band depth method, but
the modified half-region depth totally misses the ranking in
the given data set.

Consistent result is obtained in Simulation 2. In this case,
the main axis in the elliptical contours rotates from passing
through the 2nd–4th quadrants (centered at (0, 0)) to the y-
axis, and then rotates to passing through the 1st–3rd quad-
rants (see Figure 1(b)). The proposed depth successfully
captures this variation trend and generates a bell-shaped
curve over the 50 observations (see the upper right panel).
The modified band depth provides similar trend, whereas
the modified half-region depth again misses the ranking (see
the bottom two panels in the right column). In Simulation 3,
the means in both Gaussian densities remain invariant, but
their covariances get larger from observation 1 to 50. Con-
sistent result is also obtained and the detail is shown in
Figure 1(c).

4.2 NBA data

In this subsection, we will apply the proposed depth
method to a real world dataset. Our data consists of field
goal attempts’ locations from the offensive half court of
games in the 2019–2020 National Basketball Association
(NBA) regular season. The data are available from the link
https://www.basketball-reference.com/. We focus on play-
ers that made more than 500 field goal attempts (FTA). We
model a player’s shooting location choices on the offensive
half court. The standard half court size for NBA is 47 ft ×
50 ft rectangle. However, we only focus on 40 ft × 50 ft rect-
angle since most of players do not have shots beyond 40 ft,
i.e., near the half court line, which is similar with Franks
et al. [10]. The spatial domain for the basketball court in
this paper is denoted as D ∈ [0, 40] × [0, 50]. We partition
the court to 2 ft × 2 ft blocks, which implies that there are
in total 20 × 25 = 500 independent blocks in the basket-
ball court. Each block is not overlapped with another. Our
analysis includes two groups of players: one group consists
of 79 forwards or centers, and the other group consists of 78
guards.

The figures represent log intensity maps which recover
the shooting patterns of different players. For all the players
of interest, we can model their shot charts through a log
Gaussian cox process (LGCP) and estimate their associated
intensity functions using integrated nested Laplace approxi-
mation [30]. The use of LGCP is very common in basketball
shot chart analysis literature [27, 3, 14].
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Figure 2. Depth Values for forwards and centers. Norm-based
depth values of all 79 Forwards and Centers, denoted by black
dots, are shown on the upper left panel, with two high valued
players denoted in blue squares and four low valued players
denoted by red triangles. The shooting heat maps of the two
high valued ones are shown in the upper right two plots and
the maps of the four low valued ones are shown in the four
plots on the lower panel, where the value in parenthesis of

each player’s name indicates his depth value.

Figure 3. Depth Values for guard players. Same as Figure 2
except for the 78 guards.

The depth analysis result for the Forward and Center
group is given in Figure 2, where we show the norm-based
depth values on all 79 players on the upper-left panel. We
see that the depth values vary from 0 to 1, where high val-
ues indicate typical players and low values indicate outliers.
Two players with the highest depths are Maxi Kleber and
P.J. Washington (shown as blue squares in the panel). Their
heat maps are shown in the two plots on the upper right
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panel. Both players’ shooting locations concentrate around
the basket and out beyond the three-point arc, which is a
typical pattern for a forward or center. In contrast, we also
show four low depth values as red triangles in the upper-left
panel. To understand the abnormal patterns, we also show
the shooting heat maps of these four players in the four
plots, respectively, on the lower panel. Specifically, Kevin
Love is detected as an abnormal player in this group since
he has exceedingly wider shooting area than other players.
Jimmy Butler is recognized different with other players since
his long shots are mainly distributed on the right side of the
heat map. Hassan Whiteside and Rudy Gobert are abnormal
since they mainly shoot in the paint.

Figure 3 shows the depth result for the Guard group,
which has the same layout as Figure 2. The norm-based
depth values are also throughout the interval [0, 1] among
this group, and Tyler Herro and Damion Lee have the high-
est depth values. As shown in the two plots on the upper
right panel, both players shot evenly in and out of the three-
point arc, which indicates the typical shooting mode for
guard players. We also illustrate the heat maps of four play-
ers with very low depth values in the four plots on the lower
panel. Trae Young and Damian Lillard are detected as ab-
normal players due to their extensive shooting area. Both
of them have very long shooting ranges. On the other hand,
Ben Simmons and Ish Smith are assigned with low depth
values since their active area is relatively smaller than typ-
ical guards. In particular, Ben Simmons acts as a center
among guards.

4.3 Global temperature data

We also apply the proposed model-based depth method to
the monthly global temperature anomalies data which is
previous analyzed in Gu and Shen [11], Zhang, Shen
and Kong [37]. This dataset is accessed from the Na-
tional Oceanic and Atmospheric Administration (NOAA,
https://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-
products/maps), which contains the monthly temperature
anomalies (departures from a long-term average) from 1999
to 2018. Since there are numbers of missing values on some
areas, we only consider the temperature of colored part (red,
blue and grey) as shown in Figure 4. We estimate the statis-
tical depth of temperature data for Summer (northern tem-
perate zone; June, July and August) and Winter (northern
temperate zone; December, January and February), respec-
tively. For both seasons, we illustrate three months with
lowest depth values and the average temperature anomaly
of the five months with highest depth values.

We demonstrate the depth-based result for Summer
group in Figure 4, where the norm-based depth values of
monthly temperature anomalies are shown in the upper-left
panel. The norm-based depth values are approximately dis-
persed from 0.1 to 1, where high values point to the typical
global temperature conditions and low values point to out-
liers. Several NOAA climate reports are provided to confirm

Figure 4. Depth Values for Summer Temperature Data.
(a) Norm-based depth values of the Summer monthly

temperature anomalies from 1999 to 2018, denoted by black
dots, are shown on the upper left panel, with three low valued
months denoted by red triangles. The average temperature

anomaly graph of the five months with highest depth values is
shown in the lower left plot and the temperature anomaly
graph of three lowest valued months are shown in the three
plots on the right panel, where the value in parenthesis of

each month is its depth value.

the outliers detected by our depth analysis. For example, in
July 2003 temperatures were much above the 1988–2002 av-
erage across Europe, the western U.S. and Southeast Asia
though only a small part of Europe is considered in our
analysis. The global temperature was also higher than av-
erage, which was the second warmest July since 1880. In
July 2017, temperatures were above the average across much
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Figure 5. Depth Values for Winter Temperature Data. Same
as Figure 4 except for the Winter group.

of the land and ocean surfaces, and were much warmer
than the average across China, the western U.S, southern
South America, the Middle East and Australia. In particu-
lar, on July 20, 2017, the temperature in Shanghai reached
40.9◦C (105◦F), which was the hottest day ever. On the
contrary, August 2004 is detected as outlier since much of
the U.S. were remarkably cooler than the average, and the
cooler-than-average conditions also occurred across south-
ern Southeast Asia and northern Australia.

The depth analysis for Winter group is displayed in Fig-
ure 5, whose layout is the same as Figure 4. We see the
norm-based depth values are distributed from 0 to 1 for this
group. The outliers in winter data are also well explained by
NOAA reports. In February 2012, unusually cold weather
occurred across Europe and Asia, whereas the eastern U.S.

was much warmer than average. For February 2007, tem-
peratures were much above the average in Europe and Asia
and Australia, but were cooler than the average across the
eastern U.S. In addition, There were sixth globally warmest
February on record in 2007.

5. SUMMARY AND FUTURE WORK

In this paper, we have proposed a new framework to
conduct functional principal component analysis for ma-
trix data and applied it to compute model-based statistical
depth. We specify the covariance tensor of a random ma-
trix and use it to estimate the covariance function of matrix
data, and then solve the eigen-decomposition for a 4th-order
tensor by matricization. In addition, the Kronecker prod-
uct covariance structure has been introduced to reduce the
number of parameters in covariance estimation, and such an
approach improves robustness and efficiency and avoid over-
fitting. Based on this new framework, we have used the Kro-
necker product covariance and principal component analysis
to complete the algorithm for computing the defined model-
based statistical depth. In addition, the extensive simula-
tion studies validate the usefulness of our proposed method.
Compared with several benchmark methods, our proposed
method provides more robust ranking results based on em-
pirical studies. In the analysis of the NBA field goal attempts
data and global temperature data, our proposed method
successfully detect both abnormal and typical patterns of
field goal attempts and temperature anomalies. The NBA
teams and environmental scientists can be equipped with
more objective and principled analysis in their domains, and
hence make better data-informed decisions. Our contribu-
tions not only address the existing gap in ranking method-
ologies for matrix data but also offer practical insights into
the applications of our proposed framework in diverse do-
mains.

There are several important directions for further inves-
tigation in the field of depth measures for matrix or ten-
sor data. The tensor-times-matrix multiplication (Defini-
tion 2.2) can be naturally extended to higher order case.
That is we can define the multiplication between an nth-
order tensor and a 2nth-order tensor. The covariance can
also be specified for higher order tensors or for multivari-
ate functions. The estimation of covariance under the tensor
normal distribution assumption [26] and the development of
covariance-based statistical depth measures in higher-order
spaces offer interesting directions. While there are exist-
ing depth measures for multivariate data, extending them
to the matrix or tensor data requires careful consideration.
This involves defining appropriate notions of depth that cap-
ture the structural characteristics of matrices and tensors.
Investigating the theoretical properties of depth measures
for matrix or tensor data is crucial for understanding their
performance and usefulness. This includes studying prop-
erties like continuity, consistency, affine invariance, and ro-
bustness. Computational efficiency is another important as-
pect to consider when working with matrix or tensor data.
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We will explore and develop efficient algorithms to reduce
computational complexity in depth methods. Incorporating
sparsity structure in covariance estimation in high dimen-
sional settings will also be an interesting topic to investigate
in the future. Finally, while the established body of research
on statistical depth primarily focuses on the unsupervised
setting, the concept of depth for regression has also been
proposed [29, 42]. Statistical depth given covariates for ma-
trix data presents an intriguing idea and promising direction
in our future research.
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