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In this paper we develop a novel depth-based testing procedure on spa-
tial point processes to examine the difference in made and missed field goal
attempts for NBA players. Specifically, our testing procedure can statistically
detect the differences between made and missed field goal attempts for NBA
players. We first obtain the depths of two processes under the polar coordi-
nate system. A two-dimensional Kolmogorov–Smirnov test is then performed
to test the difference between the depths of the two processes. Throughout
extensive simulation studies, we show our testing procedure with good fre-
quentist properties under both null hypothesis and alternative hypothesis. A
comparison against the competing methods shows that our proposed proce-
dure has better testing reliability and testing power. Application to the shot
chart data of 191 NBA players in the 2017–2018 regular season offers inter-
esting insights about these players’ made and missed shot patterns.

1. Introduction. Do made and missed field goal attempts follow different spatial pro-
cesses for Stephen Curry? Does LeBron James have more field goal attempts in the region
where he has a higher field goal percentage? In the National Basketball Association (NBA),
analyzing field goal attempts for different players is a crucial problem for each team. From
the players’ point of view, it helps them optimize their field goal attempts and design their
training plans to improve their shooting skills. The optimal selection of field goal attempts
for a player is that he or she can make field goal attempts on all locations without differences.
From the teams’ perspective, it helps them improve their training plans for different players
or different positions. In order to answer the questions above, we need to know if there is any
difference between the made and missed locations of field goal attempts. This paper aims to
provide a statistical testing procedure to discriminate made and missed processes.

Quantitative analytics has been a key driving force in advancing modern professional
sports, and there is no exception for professional basketball (Kubatko et al. (2007)). In the
NBA, shot chart data that contain both the location and the result of each field goal attempt
will offer important insights about players’ attacking styles and shed light on the evolution of
defensive tactics. There has been much literature discussing shot chart data (see, e.g., Erčulj
and Štrumbelj (2015), Gómez Ruano, Alarcón López and Ortega Toro (2015), Hu, Yang and
Xue (2021), Hu et al. (2023), Jiao, Hu and Yan (2021a), Miller et al. (2014), Reich et al.
(2006), Shortridge, Goldsberry and Adams (2014)). Most existing studies rely on developing
statistical models to analyze the spatial patterns of different players’ field goal attempts or
find the latent subgroups among different players. Reich et al. (2006) proposed a hierarchical
regression model under point-reference data framework for both field goal attempt frequency
and accuracy over grids on the basketball court. However, they failed to capture the random-
ness of field goal attempts since the shot locations were fixed in their study. Considering
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randomness of field goal attempts in a basketball game is very important for quantitative
analysis of shot charts data. Compared to traditional point reference analysis in Reich et al.
(2006), spatial point processes (Diggle (2014)) are natural to model randomness of locations.
There is a large body of literature in the field of spatial point pattern data (see, e.g., Baddeley
(2017), Diggle (2014), Geng, Shi and Hu (2021), Guan (2006), Guan and Shen (2010), Illian
et al. (2008), Jiao, Hu and Yan (2021b)) under both parametric and nonparametric frame-
works, which thoroughly analyze the first-order(intensity) and second-order (pair correlation)
properties of spatial point processe. Miller et al. (2014), Yin et al. (2022) analyzed the inten-
sity surface of field goal attempts of professional players, which offered interesting insights
about the shooting patterns. Based on intensity estimates, Hu, Yang and Xue (2021), Yin, Hu
and Shen (2023) discovered latent subgroups among NBA players to gain important insight
about shooting similarities between different players. Jiao, Hu and Yan (2021a) proposed a
Bayesian marked point process framework for jointly modeling shot frequency and accuracy
to discover the relationship between them. Although quantitative analysis (regression analysis
and clustering analysis) of shot charts based on spatial point process has been well-explored,
discussions of the testing procedure for two or more processes are minimal.

The initial problem for testing is to select a proper statistical measure for the spatial point
process. The statistical depth provides an effective framework to describe the central tendency
(Liu and Wu (2017)) and the ordered property (Qi, Chen and Wu (2021)) for the spatial
point process. The notion of statistical depth was first introduced (Tukey (1975)) as a tool
for visualizing bivariate data sets and has been extended to multivariate data over the last few
decades. The depth is a measure of the centrality of a point with respect to a certain data cloud,
which helps to set up center-outward ordering rules of ranks. Based on different centrality
criteria, a large class of depths has been proposed, including the halfspace depth (Tukey
(1975)), convex hull peeling depth (Barnett (1976)), simplicial depth (Liu (1990)), L1-depth
(Vardi and Zhang (2000)), and projection depth (Zuo (2003)). The concept of statistical depth
has been widely applied in outlier detection (Donoho and Gasko (1992)), multivariate density
estimation (Fraiman, Liu and Meloche (1997)), nonparametric description of multivariate
distributions (Liu, Parelius and Singh (1999)), and depth-based classification and clustering
(Christmann (2002)).

On the other hand, the depth-based statistical tests are still underexplored in both theory
and applications. The earliest related work in this area, though different in the objective,
was the bivariant rank test based on Jia’s concept of ordering (Oja (1983), Hannu and Jukka
(1989), Brown et al. (1992)). Then for multivariate data, a Wilcoxon’s type of test is pro-
posed by Liu and Singh (1993) (henceforth, Liu–Singh rank sum test) since the data depth is
naturally related to ranking. As a theoretical foundation, Zuo and He (2006) elaborately stud-
ied the limiting distribution and asymptotic of Liu–Singh’s rank sum test. Multivariate depth
functions can transfer data into a one-dimensional space, and many one-dimensional testing
techniques can then be applied to the depth values. In this respect a well-composed general-
ization can be found in Zhang, Xiang and Shen (2012). Another graphic form of depth-based
test, the DD (depth vs. depth) plot, was introduced by Liu, Parelius and Singh (1999) as an
example of the potential application of depth function. Then Li and Liu (2004) systematically
studied the DD plot by examining its performance w.r.t. location shift and scale expansion
or contraction. In this paper we focus on depth-based testing procedures for the spatial point
process to explore the difference between made and missed field goal attempts among differ-
ent players in the NBA.

The contribution of this paper is two-fold. First, we introduce the two-dimensional depth
calculation for the spatial point process under the polar coordinate. Compared with the Carte-
sian coordinate, the polar coordinate represents the field goal attempts more appropriately,
since the distance and angle are the two most important factors for shooting selections by
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professional players (Reich et al. (2006)). Then we propose a new depth-based Kolmogorov–
Smirnov test for two spatial point processes based on a two-dimensional depth.

The rest of this article is organized as follows. In Section 2 we select one representa-
tive player for each position from the 2017–2018 NBA regular season and present their shot
charts. In Section 3 we first briefly discuss the spatial point process model and depth cal-
culation for spatial point pattern data. Then a depth-based testing procedure is proposed to
discriminate the difference between made and missed processes. Extensive simulation studies
are conducted in Section 4 to investigate the empirical performance of the proposed testing
procedure. Applications of the proposed testing procedure to 191 NBA players in the 2017–
2018 regular season are reported in Section 5. We conclude this paper with a brief discussion
in Section 6.

2. Motivating data. The NBA shot charts are freely available on the official NBA site
nba.com/stats, and our study focuses on the regular season in 2017–2018. The data for each
player contain information about all field goal attempts in the regular season. From the data
the half-court is positioned on a Cartesian coordinate system centered at the center of the
rim, with x ranging from −250 to 250 and y ranging from −50 to 420, both with the unit of
0.1 foot, as the size of an actual NBA basketball half-court is 50 feet × 47 feet. We pick up
one representative player for each position (Point Guard (PG), Shooting Guard (SG), Small
Forward (SF), Power Forward (PF), or Center (C)), such as Stephen Curry, DeMar DeRozan,
LeBron James, Giannis Antetokounmpo, and DeAndre Jordan. Figure 1 shows their field goal
attempts’ locations, colored to indicate made or missed for each attempt.

As we can see from the plots, DeAndre Jordan does not have any field goal attempts from
3-point line. Most of the shots of Stephen Curry are made either close to the rim or right
outside the arc (i.e., 3-point line). DeMar DeRozan tends to have a uniformly distributed shot
pattern throughout the court. LeBron James has relatively more shots in the right-hand side

FIG. 1. Field Goal Attempts Data Display. On half court image, each point represents one shot. The marginal
distributions of the shot locations are shown on the left and down sides of each plot, respectively. (Players: Stephen
Curry, DeMar DeRozan, LeBron James, Giannis Antetokounmpo, DeAndre Jordan).

http://nba.com/stats
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area toward the basket. Giannis Antetokounmpo apparently has more missed attempts from
3-point line.

3. Model setup.

3.1. Spatial point process. For a particular player, the observed shot chart can be repre-
sented by two spatial point processes Smade = (s1, s2, . . . , sn1) and Smissed = (s′

1, s
′
2, . . . , s

′
n2

),
where Smade and Smissed are the collections of the locations of made and missed field goal
attempts and n1 and n2 are the numbers of shots for made and missed processes, respectively.

Spatial point process model provides a natural framework for capturing the random behav-
ior of event location data. For example, in the made process, let si = (xi, yi), i = 1, . . . , n1 be
the set of x- and y-coordinate locations for points that are observed in a predefined, bounded
region B ⊆R

2, which is the half basketball court. We denote the underlying stochastic mech-
anism that gives rise to the observed point pattern Smade as the spatial point process Y. The
process NY(A) = ∑n1

i=1 1(si ∈ A) is a counting process associated with the spatial point pro-
cess Y, which counts the number of points that fall into the area A ⊆ B.

A large body of literature on probability distributions exists for spatial point processes (see,
e.g., Diggle (2014) and references therein), including Poisson processes, Gibbs processes,
and Cox processes, etc. In that literature the most widely adopted class of models is the non-
homogeneous Poisson processes (NHPP), which assumes conditionally independent event lo-
cations with a deterministic intensity λ(s). Under the NHPP framework, the number of events
in area A, NY(A), follows a Poisson distribution with rate parameter �(A) = ∫

A λ(s) ds. In
addition, NY(A1) and NY(A2) are independent if two areas A1 ⊆ B and A2 ⊆ B are disjoint.
Given the observed point pattern Smade on fixed region B, the likelihood of NHPP is

L =
∏n1

i=1 λ(si )

exp(
∫
B λ(s) ds)

,

where λ(si ) is the intensity function evaluated at location si . As mentioned in Section 1,
most existing literature focuses on intensity estimation or pair correlation estimation and
joint model for marked point process. In this paper our goal is to propose a testing procedure
for the null hypothesis

H0 : Smade and Smissed are the same process.

Our testing procedure is based on the depth of spatial point process.

3.2. Depth calculation. Let S denotes a collection of locations in a bounded set B ⊆R
2;

a depth function essentially is a map from B to R
+ which generates an appropriate center-

outward rank for locations of points.
Depth functions for multivariate data can be broadly categorized as nonparametric depth

(e.g., half-space/Tukey depth) and parametric forms (e.g., Mahalanobis depth). While differ-
ent depth functions have various properties (such as shapes and contours), one should choose
an appropriate depth based on the nature of data. Here we briefly describe two classical depth
functions as follows.

Let P be the probability measure on R
d , d ≥ 1, then for a point z ∈ R

d , the Mahalanobis
depth and Tukey’s depths are defined in the following forms:

Mahalanobis Depth (MD) (Liu and Singh (1993)): Let μ and � denote the mean vector
and variance-covariance matrix of P, the Mahalanobis depth (MD) for z w.r.t. P is

(3.1) MD(z;P) = [
1 + (z − μ)T �−1(z − μ)

]−1
.
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Half-space/Tukey’s Depth (HD) (Tukey (1975)): The HD of z w.r.t. P is defined as

(3.2) HD(z;P) = inf
H

{
P(H) : H is a closed halfspace in R

d containing z
}
.

By replacing P in equations (3.1) and (3.2) with empirical distribution Pn, we have
the sample version of Mahalanobis depth and Tukey’s depth. Both Mahalanobis depth and
Tukey’s depth for multivariate data are well-established. In contrast to the stereotyped elliptic
depth contours of Mahalanobis depth, Tukey’s depth provides more flexible and appropriate
contours. As a nonparametric depth function, Tukey’s depth does not rely on the estimation of
mean and variance. In the following sections, we will adopt Tukey’s depth except otherwise
specified.

For d > 1, the computation relies on effectively finding a hyperplane containing zi that
satisfies the definition of Tukey’s depth in equation (3.2). Such computation can be extremely
inefficient or infeasible, especially for high-dimensional data. In this paper the computation
of depth has never been extended to more than two dimensions. For d = 2, a straightforward
algorithm for Tukey’s depth needs O(n2) steps. We will adopt a faster algorithm proposed by
Rousseeuw and Ruts (1996), which only requires O(n logn) steps, where n denotes sample
size.

3.3. Depth based testing. The performance of parametric statistical tests often relies on
the normality assumption of the underlying distribution. In contrast, some nonparametric tests
can perform better when dealing with symmetrically distributed data (e.g., KS test (Mohd
Razali and Yap (2011)), Wilcoxon’s test). To address this, a data transformation function is
needed to improve the reliability and consistency of tests. On the other hand, it is generally
challenging to extend the one-dimensional tests to multivariate space directly. For example,
since the maximum difference of two joint cumulative distribution functions is not clearly
defined, the Kolmogorov–Smirnov test (KS test) cannot be simply generalized for high-
dimensional data. One common approach to generalizing those tests to high-dimensional
space is through dimensional reduction techniques.

In general, a multivariate depth function is a continuous function mapping data from R
d

to R
+ that holds the following four properties (Zuo and Serfling (2000)): affine invariance,

maximality at the center, monotonicity relative to the deepest point, and vanishing at infin-
ity. All these properties make multivariate depth function an ideal predefined transformation
when performing statistical tests on high-dimensional data.

Here, we briefly review the depth-based goodness-of-fit tests that treat depth functions as
transformations to reduce data dimensionality, include Liu–Singh rank-sum test, depth-based
Pearson’s chi-square test, and depth-based KS test and Cramer–Von Mises test. We will then
propose our new depth-based test.

3.3.1. Liu–Singh rank sum test. The well-known Wilcoxon rank sum can naturally in-
corporate depth functions. In this respect, Liu and Singh (1993), Zuo and He (2006) system-
atically generalized the Wilcoxon rank sum test to multivariate data through depth functions
(refer to as Liu–Singh depth-based rank sum test). Briefly, the Liu–Singh depth-based rank
sum test can be described as follows.

Let X ∼ H and Y ∼ G be two independent random variables in R
d , and D(·;H) be a

depth function of a given distribution H that maps R
d to [0,1]. Then the outlyingness of y

w.r.t. H can be measured by R(y;H) = PH(X : D(X;H) ≤ D(y;H)), and we define

Q(H,G) :=
∫

R(y;H)dG(y) = P
{
D(X;H) ≤ D(Y ;H)|X ∼ H,Y ∼ G

}
.

Following Proposition 3.1 in Liu and Singh (1993), for continuously distributed D(·;H),
R(Y ;H) follows a uniform distribution in [0,1]. Under the null hypothesis H0 : H = G, the
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test statistic Q(H,G) = 1
2 and Q(H,G) < 1

2 indicates the possible location shift or scale
increase from H to G.

In practice, one can compare two empirical distributions Hm and Gn through the two-
sample version of Liu–Singh depth-based rank sum test such that

(3.3) Q(Hm,Gn) :=
∫

R(y;Hm)dGn(y) = 1

n

n∑
j=1

R(Yj ;Hm).

While the asymptotic results rely on the dimensionality of data and properties of depth
function, for dimension d = 1, under null hypothesis, Liu and Singh (1993) have shown that

(
(1/m + 1/n)/12

)−1/2(
Q(Hm,Gn) − 1/2

) → N(0,1).

By assuming more conditions on the depth function, Zuo and He (2006) extended the asymp-
totic studies of Liu–Singh depth-based rank sum test to higher dimensions under both null
and alternative hypothesis.

3.3.2. Depth-based Pearson’s chi-square test. Another important depth-based test is de-
rived from Pearson’s chi-square test, which involves discretizing and separating the contin-
uous depth values into multiple intervals. By counting the number of observations that fall
into those predefined depth value intervals, one can form a classical Pearson’s chi-squared
test against expected frequencies. Here we briefly describe the test procedure as follows.

Let X ∼ F be a random variable in R
d and D(·;F) be a depth function that maps X to

[0, 1]. Given a random sample of size n, under H0 : F = F0, denote zj,F0 = D(xj ;F0) as the
depth of xj with respect to F0, j = 1,2, . . . , n. Assuming the depth values can be separated
by ai, i = 1, . . . , r such that

0 = a0 < a1 < · · · < ar−1 < ar = 1.

Define

Ai = {
X : ai−1 < D(X;F0) ≤ ai,X ∈ Rd}

, i = 1, . . . , r,

pi = PF0(Ai), ni = #{j : ai−1 < zj,F0 ≤ ai, j = 1, . . . , n}, i = 1, . . . , r.

Now, we have the expected frequency npi and observed frequency ni for r regions:
A1,A2, . . . ,Ar ∈ R

d , and the Pearson’s chi-square test statistic, shown in Section 2.1 in
Zhang, Xiang and Shen (2012), is computed by

(3.4) χ2 =
r∑

i=1

(ni − npi)
2

npi

∼ χ2(r − 1).

To make the depth-based chi-square test powerful, one does not only require the sample
size n ≥ 50 but also need to ensure the theoretical frequencies npi ≥ 5 for each segmented
region Ai, i = 1, . . . , r .

3.3.3. Depth-based Cramer–Von Mises and Kolmogorov–Smirnov test. A multivariate
depth function transforms data from high-dimensional space to one dimension. Therefore,
some general one-dimensional tests, such as the classical Kolmogorov–Smirnov (KS) test
and Cramer–Von Mises (CM) test, can be performed on the transformed data.

Denote F0(x) as a continuous distribution function and Fn(x) as the empirical distribution
function of sample X1,X2, . . . ,Xn ∈ R

d . Then the KS and CM statistics can be denoted as

KS = sup
x∈Rd

∣∣Fn(x) − F0(x)
∣∣,CM =

∫
Rd

[
Fn(x) − F0(x)

]2
dF0(x).
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The KS test or CM test depends largely on the distribution F0, and technically, they are
not nonparametric tests. But one can apply a depth-based transformation R(·) (Zhang, Xiang
and Shen (2012)) of Liu–Singh’s test as

Ti = PF0

(
X : D(X;F0) ≥ D(Xi;F0)

)
, i = 1,2, . . . , n.

Under Proposal 3.1 in Liu and Singh (1993), Ti follows a uniform distribution in [0,1]
under null hypothesis. The test of equal distribution is equivalent to: H0 : T1, . . . Tn is
a random sample from U [0,1]. Denote Gn(t) as the empirical distribution function of
{Ti, i = 1, . . . , n}, then the one-dimensional KS test statistic and CM test statistic, based on
Gn(t), are

KS∗ = sup
t∈[0,1]

∣∣Gn(t) − t
∣∣,CM∗ =

∫ 1

0

[
Gn(t) − t

]2
dt.

Notice that both test statistics KS∗ and CM∗ do not depend on F0, and they are nonparametric
tests.

3.4. Two-dimensional KS test. The depth-based statistical tests mentioned above include
two essential steps: (1) apply a multivariate depth function to reduce the dimensionality of
each data point to one and (2) perform a one-dimensional test on the scalar depth values. In-
evitably, part of dimensional information (e.g., shape) is lost during the dimension reduction.
In this section we seek an alternative approach of incorporating depth into hypothesis testing.

Among many popular multivariate tests of equal distribution, it is well-known that the
KS test is sensitive to location shift and shape change. In practice, the generalization of the
KS statistic to multivariate settings is challenging since the maximum difference between
two joint cumulative distribution functions is not well-defined. One solution proposed by
Justel, Peña and Zamar (1997) is Rosenblatt’s transformation, but the computational process
of Rosenblatt’s transformation is rather complicated to use. Another natural approach is to
compare the CDFs of two samples from all possible orders. In this aspect, Peacock (1983)
proposed a two-dimensional KS test, which is hard to extend to more than two dimensions due
to the computational cost. Fasano and Franceschini (1987) further improved Peacock’s work
by proposing a faster version, which also considers the correlation of data and sample size and
then generalizes it to a three-dimensional case. Although the theoretical study of Peacock’s
test for dimensionality beyond three is lacking, we mainly focus on two-dimensional data in
this paper.

For dimension d = 2, Peacock’s method compares the integrated probability in each of
four natural quadrants around a given point (xi, yi), namely, the total probabilities in (x >

xi, y > yi), (x < xi, y > yi), (x < xi, y < yi), (x > xi, y < yi). Then the two-dimensional
KS statistic TKS is the maximum difference of the corresponding integrated probabilities over
all data points and all quadrants.

Note that the distribution of statistic TKS, in general, may not be independent of the shape
of underlying two-dimensional distribution under the null hypothesis. Fasano and Frances-
chini (1987) approximated the distribution of TKS as a function of sample size and correlation
through extensive Monte Carlo simulations. Furthermore, by studying the Monte Carlo sim-
ulation results, the significant level of the two-dimensional KS test can be approximated by

(3.5) Pr(TKS > observed) = QKS

( √
NTKS

1 + √
1 − r2(0.25 − 0.75/

√
N)

)
,

where N is the sample size,

QKS(x) = 2
∞∑

j=1

(−1)j−1e−2j2x2
,
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and r is the correlation coefficient. For comparing two samples with sizes n1 and n2, ap-
proximation equation (3.5) still holds with N = n1n2

n1+n2
. Notice that the above approximation

formula is accurate enough when N > 20 and when the indicated probability (significance
level) is less than 0.20.

3.5. A new two-dimensional depth-based KS test. We now turn to propose our new statis-
tical test based on statistical depths for basketball players’ shot charts. The statistical scheme
we presented in this section is built upon the polar representation of shot locations. Polar
coordinates have been widely applied in shooting data analysis (Gudmundsson and Horton
(2017), Reich et al. (2006)). During a basketball game (among many other games), players
move around and focus on a fixed point (the basket); therefore, it is more natural to interpret
a shot location as polar coordinates than the conventional Cartesian coordinate.

Then we are interested in testing if two shooting patterns are the same. Suppose one shoot-
ing pattern follows a Poisson process with intensity function λ1(·) and another follows a
spatial point process with intensity function λ2(·). The goal of the proposed procedure is to
test

H0 : λ1(·) = λ2(·).
Notice that their intensity function completely defines the two spatial point processes; there-
fore, the null hypothesis is equivalent to

H0 : F1(·) = F2(·),
where F1 and F2 are the corresponding distribution functions of two spatial point processes.

Suppose two independent spatial point process samples S1 = (s1, . . . , sn1) and S2 =
(s′

1, . . . , s
′
n2

) have underlying intensity function λ1 and λ2, respectively, where si = (xi, yi),
i = 1, . . . , n1 and s′

j = (x′
j , y

′
j ), j = 1, . . . , n2 are the observed locations in the pre-defined,

bounded region B ∈ R
2. Then the proposed test procedures can be list as the following steps:

1. Transfer Cartesian coordinate (x, y) to polar coordinate (r, θ) by

r =
√(

x2 + y2
)
, θ = arctan

(
y

x

)
.

Denote the transformed S1, S2 as S∗
1 = (s∗

1 , . . . , s∗
n1

) and S∗
2 = (s∗′

1 , . . . , s∗′
n2

), where s∗
i =

(ri, θi) and s∗′
j = (r ′

j , θ
′
j ). For basketball shot locations in this paper, we set the basket as the

origin.
2. Estimated the pooled depth values for every location in S∗

1 and S∗
2.

Under H0 : λ1 = λ2, we merge two sets as

S∗
pool = (

s∗
1 , . . . , s∗

n1
, s∗′

1 , . . . , s∗′
n2

)
.

As discussed previously, instead of using a two-dimensional depth, we apply an one-
dimensional halfspace depth function D(·) on r and θ separately. For one-dimensional halfs-
pace depth, D(·) is uniformly distributed in [0, 1

2 ] if the underlying distribution is continuous.
Since the one-dimensional halfspace depth can be written as D(x) = min(F (x),1 − F(x)),
where F(x) is the CDF of a continuous variable X. It is well-known that F(x) is uniformly
distributed between [0,1]; hence, 0 ≤ D(x) ≤ 1/2, and

P
{
D(x) ≤ d

} = P
{
F(x) ≤ d,F (x) ≤ 1/2

} + P
{
1 − F(x) ≤ d,F (x) ≥ 1/2

}
= 2 · P {

F(x) ≤ d,F (x) ≤ 1/2)
} = 2d.

The pooled depth of location (r, θ), based on the pooled set, therefore, is a two-
dimensional value (D(r;S∗

pool),D(θ;S∗
pool)), where D(r;S∗

pool) and D(θ;S∗
pool) measure the
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center-outward ranks of (r, θ) based on S∗
pool w.r.t. distance r and angular θ , respectively.

D(r;S∗
pool) and D(θ;S∗

pool) can be calculated as

D
(
r;S∗

pool
) = min

(#{rk ∈ S∗
pool : rk ≤ r, k = 1, . . . , n1 + n2}

n1 + n2
,

#{rk ∈ S∗
pool : rk ≥ r, k = 1, . . . , n1 + n2}

n1 + n2

)
,

and

D
(
θ;S∗

pool
) = min

(#{θk ∈ S∗
pool : θk ≤ θ, k = 1, . . . , n1 + n2}

n1 + n2
,

#{θk ∈ S∗
pool : θk ≥ θ, k = 1, . . . , n1 + n2}

n1 + n2

)
.

By applying above functions to S∗
1 and S∗

2, we get the two-dimensional depth representa-
tion for points in S∗

1 and S∗
2, denote as D1 and D2.

3. Calculate the two-dimensional KS statistic TKS and approximate the P -value.
The two-dimensional KS statistic TKS is the maximum difference of the corresponding

integrated probabilities over all data points and four natural quadrants. But when comparing
two samples, TKS depends on which dataset ranged over. As proposed by Press et al. (1986),
one solution is to use the average of TKS values obtained from ranging two samples.

For notation purpose, we denote D(r;S∗
pool) as dr , D(θ;S∗

pool) as dθ . Let C1
D1

(dr , dθ ),

C2
D1

(dr , dθ ), C3
D1

(dr , dθ ), C4
D1

(dr , dθ ) denote the counts of points of set D1 = {(dri , dθi
), i =

1, . . . , n1} in quadrants (dr > dri , dθ > dθi
), (dr ≤ dri , dθ > dθi

), (dr ≤ dri , dθ ≤ dθi
), (dr >

dri , dθ ≤ dθi
), respectively. Then

TKS1 = max
(dri

,dθi
)∈D1

[∣∣∣∣
C1
D1

(dri , dθi
)

n1
− C1

D2
(dri , dθi

)

n2

∣∣∣∣,
∣∣∣∣
C2
D1

(dri , dθi
)

n1
− C2

D2
(dri , dθi

)

n2

∣∣∣∣,
∣∣∣∣
C3
D1

(dri , dθi
)

n1
− C3

D2
(dri , dθi

)

n2

∣∣∣∣,
∣∣∣∣
C4
D1

(dri , dθi
)

n1
− C4

D2
(dri , dθi

)

n2

∣∣∣∣
]
,

TKS2 = max
(dr′

i
,dθ ′

i
)∈D2

[∣∣∣∣
C1
D1

(dr ′
i
, dθ ′

i
)

n1
− C1

D2
(dr ′

i
, dθ ′

i
)

n2

∣∣∣∣,
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C2
D1

(dr ′
i
, dθ ′

i
)

n1
− C2

D2
(dr ′

i
, dθ ′

i
)

n2

∣∣∣∣,
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C3
D1

(dr ′
i
, dθ ′

i
)

n1
− C3

D2
(dr ′

i
, dθ ′

i
)

n2

∣∣∣∣,
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C4
D1

(dr ′
i
, dθ ′

i
)

n1
− C4

D2
(dr ′

i
, dθ ′

i
)

n2

∣∣∣∣
]
,

and

TKS = TKS1 + TKS2

2
.

The p-value can be estimated using equation (3.5). The detailed algorithm can be found in
Section 14 of Press et al. (1986). Once the p-value is calculated, one can compare it with the
critical value (e.g., 5%) to decide whether to reject the null hypothesis.

Both proposed depth-based KS test and KS test we described in Section 3.3.3. Assume that
S1 and S2 are independent. Comparing with depth-based tests we discussed in Section 3.3,
the proposed framework is computationally efficient. This is because one only needs to loop
through four quadrants rather than all possible directions. The computation time can be fur-
ther reduced by the approximation methods we described. Besides, we expect the proposed



2624 K. QI, G. HU AND W. WU

test to achieve a better performance since it utilizes more information to form test statistics.
In the following section, we will compare our proposed test with other tests on simulations
and real data.

4. Simulation study. In this section we mainly focus on testing the performance of our
proposed test method through simulations. For comparing two spatial processes, an effec-
tive statistical testing scheme is the one that is sensitive to minor variations in distribu-
tions/intensities (i.e., power of the test), yet insensitive to noises when the underlying distri-
butions are the same (i.e., type I error). Therefore, the simulations in this section are designed
to evaluate the performance of our proposed test w.r.t. controlling type I error and enhancing
the power of the test.

Our proposed test scheme consists of three components: adoption of the polar system,
transformation through one-dimensional depth function, and a two-dimensional KS test. We
want to test the role and performance of each component. Also, we would like to compare
our proposed test scheme with other classical depth-based tests or traditional “goodness-of-
fit” tests. For comparison, we will perform Liu–Singh’s rank sum test, the two-dimensional
KS test, and our proposed test on the same simulated datasets, on both the original Cartesian
system and polar system.

The detailed test schemes are listed as follows:

• Method 1: Liu–Singh’s rank sum test, as introduced in Section 3.3. To be consistent, we
adopt a two-dimensional Tukey’s depth (equation (3.2)) as the transformation depth func-
tion. Then by Corollary 2 and Theorem 1 in Zuo and He (2006), assume H is continuous;
the following asymptotic result holds for Tukey’s depth:

(
σ 2

GH/m + σ 2
HG/n

)−1/2(
Q(Hm,Gn) − Q(H,G)

) d−→ N(0,1) as min(m,n) → ∞,

where under the null hypothesis H = G, Q(H,G) = 1/2 and σ 2
GH = σ 2

HG = 1/12. This
implies that the p-value can be estimated by N(0,1) according to the asymptotic result
above.

• Method 2: A variant of Method 1 by adopting the polar coordinate. We introduce an addi-
tional transformation layer that maps data from Cartesian coordinates to polar coordinates
before employing the two-dimensional Tukey’s depth. The purpose of this method is to
isolate the impact of the polar system and evaluate it separately.

• Method 3: The popular two-dimensional KS test. Since we have elaborately described the
two-dimensional KS test in Section 3.5, we will omit the test details here.

• Method 4: The two-dimensional KS test on the polar coordinate system. Similar to Method
2, we perform an two-dimensional KS test on the polar coordinate.

• Method 5: Same as our proposed test scheme in Section 3.5, except that we omit the first
step and directly work on the original Cartesian coordinates. That is, this method contains
two steps: first, estimate the pooled depth of location (x, y), and then perform a two-
dimensional KS test on pooled depth.

• Method 6: Our proposed method as described in Section 3.5.

4.1. Performance on controlling type I error. In this section we randomly generate
two groups of spatial point process realizations, denote as G1 = {S1,S2, . . . ,S100} and
G2 = {S′

1,S′
2, . . . ,S′

100}. Each group contains 100 realizations; realizations in G1 follow a
Poisson process with intensity map λ1(s), and realizations in G2 follow a Poisson process
with intensity map λ2(s). The intensity maps are the discretized versions of intensity func-
tion, which can be denoted as a 112 × 112 grid. For each grid the associated number stands
for the total intensity of the grid. The log intensity maps of λ1 (Design 1) and λ2 (Design 2)
are shown as Figure 2.



DEPTH BASED TESTING FOR FIELD GOAL ATTEMPTS 2625

FIG. 2. Contour Plots for Intensity Maps of Two Simulation Designs.

Those two intensity maps, which are calculated by R-package lgcp (Taylor et al. (2013)),
are picked from two representative NBA players (Steve Adams and James Harden). The
first pattern corresponds to players most of whose shots are in the painted area, and another
pattern represents shooting locations at the three-point line and inside the painted area. Under
our simulation settings, the locations of field goal attempts are generated via the R-package
spatstat (Baddeley and Turner (2005)) based on intensity maps shown in Figure 2. As we can
see from the above intensity maps, the intensity surfaces of Group 1 and Group 2 are different
visually.

As the first step, we test to see if all test schemes could differentiate realizations in G1
from G2. We randomly select one realization from Group 1 and Group 2 separately (denoted
as S and S′) without replacement for 100 times and form 100 hypothesis tests with the null
hypothesis

H0 : λ(s;S) = λ
(
s;S′),

or equivalently, H0 : F(s;S) = F(s;S′), where F(s;S) and F(s;S′) are the corresponding
distribution function of S and S′. Here we use the conventional significant level 5% as crite-
rion, and all 100 tests are rejected for all test schemes (Method 1–Method 6). This result is
expected since the two intensity functions are very distinct. Then we focus on testing perfor-
mances regarding controlling type I error.

To estimate the type I error of different test schemes, we randomly select two realizations
from each group for 485 times, then test against each other. The null hypothesis is H0 :
F(s;S) = F(s;S′), where S and S′ sampled from the same group. We still use 5% as the
significant level and count the rejection number of different test schemes. The results are
shown in Table 1.

From results shown in Table 1, we see that our proposed test (Method 6) is closest to
the 5% rejection boundary for all 970 tests, which achieved the lowest type I error rate. We
believe this is due to the combined effect of the two-dimensional KS test, polar system and
adoption of depth functions. If we compare the depth-based Liu–Singh’s tests (Methods 1
and 2) with the two-dimensional KS tests (Methods 3 and 4), the two-dimensional KS tests
perform better than Liu–Singh’s tests, especially for Design 2. The partial reason is that Liu–
Singh’s test focuses more on data ranks and does not utilize the complete information of data.
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TABLE 1
Number of rejected tests for each group

Method Design 1 Design 2 Sum

Liu–Singh’s test on Cartesian coordinate (Method 1) 51 86 137
Liu–Singh’s test on Polar coordinate (Method 2) 43 70 113
Two-dimensional KS test on Cartesian coordinate (Method 3) 52 55 107
Two-dimensional KS test on Polar coordinate (Method 4) 36 52 88
Our proposed test on Cartesian coordinate (Method 5) 23 45 68
Our proposed test on Polar coordinate (Method 6) 25 25 50

Note: There are 485 tests performed for each design based on methods we mentioned above. In total, for each
method we performed 970 tests

Similarly, comparing the tests on the Cartesian system (Methods 1, 3, and 5) with tests on
the polar coordinate (Methods 2, 4, and 6) in Table 1, we notice that the usage of the polar
system improves the overall test performance on controlling type I error.

In addition, we compare the two-dimensional KS tests (Methods 3 and 4) with our pro-
posed tests (Methods 5 and 6). Although all these tests are based on the two-dimensional KS
test, one can see that the type I errors are lower after adopting depth transformation (espe-
cially for Group 2). It further suggests that our proposed test outperformed other tests we
considered in controlling type I error.

4.2. Performance on power of test. In this section we emphasize on examining the sensi-
tivity of our proposed test schemes with respect to small perturbations, that is, the sensitivity
of power with respect to the magnitude of shifts in distribution. This section aims to examine
if the adoption of the polar system and depth function will improve the power of the test.
Hence, we will mainly consider three different KS test schemes for comparison:

• The two-dimensional KS test (Method 3).
• The two-dimensional KS test on the polar coordinate system (Method 4).
• Our proposed depth-based test scheme (Method 6).

First, for each realization Si = (si,1, . . . , si,ni
) and S′

i = (s′
i,1, . . . , s

′
i,mi

), i = 1, . . . ,100 in
G1 and G2 simulated previously, we add a random location-shift noise ξ ∼ Gaussian([0,0],
0.25rI ) on each location. That is,

SSi = (si,j + ξ, j = 1, . . . , ni),

SS′
i = (

s′
i,j + ξ, j = 1, . . . ,mi

)
,

where ni and mi are the cardinalities of realization Si and S′
i and I is the two-dimensional

identity matrix. Here we introduce a scale parameter r to adjust the magnitude of the noise;
as r gets larger, the shifted distribution is more separated from the original distribution.

Note that the noise ξ will only change the conditional distribution of location F(Si ||Si | =
ni), and the number of points (cardinality) ni remains untouched. For each group we can
perform 100 hypothesis tests with null hypothesis

H0 : F(Si ) = F(SSi ) for i ∈ [1, . . . ,100],
or

H0 : F (
S′

i

) = F
(
SS′

i

)
for i ∈ [1, . . . ,100].

By setting scale parameter r to different values in [0,1,2,3,4,5,6,7] and calculating the
average p-value of 100 tests, we have the result in Figure 3. From Figure 3 we see that our
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FIG. 3. “KS1” is the two-dimensional KS test on Group 1 (Method 3), “KS-polar1” is the two-dimensional
KS test based on polar coordinate for Group 1 (Method 4), and “Depth-KS1” is the proposed test scheme for
Group 1. Similar notation applies to Group 2: (a). Plot of number of rejected tests (α = 0.05) for Group 1 (dash
line) and Group 2 (solid line) based on the proposed test scheme, KS test, and KS test on polar coordinate. (b).
Corresponding average P -value plot.

proposed test is more sensitive to small Gaussian noises than the traditional KS test or KS test
on the polar system. The average P -values of our proposed KS test scheme decrease more
rapidly than the other two tests, suggesting that the adoption of polar coordinate and depth
function could improve the test power.

In addition, we add tiny variations directly on the intensity map, regenerate 100 realiza-
tions, and then test against the original realizations. As we mentioned earlier, the intensity
map can be viewed as a 112 × 112 grid, and the number in each grid stands for the total
intensity of the corresponding area. For each grid we add a noise term ε ∼ F(r), where F(r)

is a distribution with a parameter r to adjust the magnitude of noise.
The distributions of the noise term we consider are:

• Half-Gaussian distribution: ε ∼ |N(0, r)|,
• Lognormal distribution log(ε) ∼ N(0, r).

By adjusting r from [0.025,0.05,0.075,0.125,0.15] for the half-Gaussian noise and
[0.1,0.5,0.75,1,1.25] for the lognormal noise, we get the test results shown in Table 2.

TABLE 2
Number of rejected tests out of 100 tests

Type of noise r KS (method 3) KS polar(method 4) The proposed test (method 6)

ε ∼ |N | 0.025 59|9 73|12 57|15
0.05 100|13 100|27 100|29
0.075 100|23 100|37 100|42
0.125 100|72 100|94 100|91
0.15 100|93 100|100 100|99

log(ε) ∼ N 0.1 6|5 2|3 12|5
0.5 8|8 8|4 13|8
0.75 23|11 23|15 25|20
1 46|34 42|34 57|41
1.25 96|94 99|99 99|100

Note: The test results are based on criteria α = 0.05. The number in the front of separate ‘|’ is the number of
rejected tests for Group 1, the number after ‘|’ is the number of rejection for Group 2, and each group contain 100
tests
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TABLE 3
Number of rejected tests out of 100 location-shift tests

Shift by c pixel KS (method 3) KS polar (method 4) The proposed test (method 6)

1 24 30 36
2 76 82 85
3 100 100 100
4 100 100 100
5 100 100 100

Note: The test results are based on criteria α = 0.05

Finally, we shift the intensity map by c pixel horizontally, regenerate 100 realizations
according to the shifted intensity map, and test against the original realizations. Since the
intensity map of Group 1 (λ1) is too concentrated and sensitive to small location shifts, all
tests are rejected after one pixel shift. Here we discard tests results for λ1 and only test λ2 vs.
λr

2 (the shifted intensity map by r pixel). The results are shown in Table 3.
From Table 2, one can see that for half-Gaussian noises, our proposed test scheme is more

sensitive to small noises in intensity maps, especially in Group 2 (λ2). This indicates our pro-
posed test has the ability to identifying small differences among underlying intensity maps.
Although the test results for Method 4 and Method 6 are similar, the slight improvement
suggests the adoption of depth transformation is suitable when dealing with half-Gaussian
noises. The test results for lognormal noises further support our supposition for which the
improvement after adopting depth transformation is more evident by comparing Method 6
with Method 3 and 4.

In contrast in Table 3, the test results suggest both polar and depth transformations will
improve the sensitivity of the test. By comparing Method 3 and Method 4, the only difference
is whether the KS test on polar coordinates are used, and the enhancement is solely based on
the implementation of the polar system. On the other hand, the improvement in sensitivity
from Method 4 to Method 6 attributes to the usage of depth transformation, which is the only
difference between these two methods.

5. Professional basketball data analysis.

5.1. Data overview. Our data consists of both made and missed field goal attempt loca-
tions from the offensive half court of games in the 2017–2018 National Basketball Associ-
ation (NBA) regular season. The visualization of selected players is shown in Section 2. In
this section we focus on players who have made more than 400 field goal attempts. Also, the
rookie players in that season, such as Lonzo Ball and Jayson Tatum, are not considered. In
total, we have 191 players who meet the two criteria above in our analysis.

5.2. Hypothesis testing for NBA players. Our goal is to discriminate the difference be-
tween made process and missed process for NBA players. This section also includes the KS
test and KS test with polar coordinates in contrast to our proposed depth-based test for all
191 players. Our testing procedure rejects the null hypothesis for 147 players under α = 0.05
and fails to reject the null hypothesis for 44 players. However, the other two methods fail to
reject the null hypothesis for just 13 players. The details of players’ names for the three test-
ing procedures are shown in the Supplementary Material (Qi, Hu and Wu (2024)). In order
to have a closer look at our testing results, we pick several representative players to visualize
their made and missed locations in Figure 4 and Figure 5.
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FIG. 4. Made (Top) and missed (Bottom) shot locations of five example players (Evan Fournier, Jamal Murray,
Khris Middleton, Klay Thompson, Kristaps Porzingis) whose missed and made shot patterns are not significantly
different (with α = 0.05) by our proposed test but are different by the other two methods (KS test and KS test after
Polar transition) in our comparison.

Figure 4 contains five players. Our testing procedure does not reject the null hypothesis,
but the other two testing procedures reject the null hypothesis for these five players. From
this figure we see that the missed and made shot patterns for these players are very similar.

Figure 5 contains three players. Our testing procedure rejects the null hypothesis, but the
other two testing procedures do not for these three players. Clearly, the missed and made
shot patterns of these three players are quite different: Hood has more missed shots on top

FIG. 5. Made (Top) and missed (Bottom) shot locations of three example players (Denzel Valentine, Marvin
Williams, Rodney Hood) whose missed and made shot patterns are significantly different (with α = 0.05) by our
proposed test but are not different by the other two methods (KS test and KS test after Polar transition) in our
comparison.
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FIG. 6. Top five Players with smallest P -values based on our proposed test framework. Each column indicates
the Made pattern (Top) and Missed pattern (Bottom) of the respective player.

3-pointers; Valentine has different patterns on long 2-pointers; Williams has more missed on
the right and left top 3-pointers.

In addition, we have the top five players (Giannis Antetokounmpo, LeBron James, An-
thony Davis, Andrew Wiggins, Andre Drummond) with the smallest p-value in Figure 6.
We see that the listed five players’ made processes are much different from their missed
processes. For example, Andre Drummond does not have successful FTAs out of paint re-
gion, and Antetokounmpo has many more missed shots on right-wing 3-pointers and long
2-pointers.

Furthermore, we pull the top five players with the highest field goal attempts of each posi-
tion (C, PF, SF, SG, and PG). The three testing procedures have consistent results, rejecting
the null hypothesis at α = 0.05 for all five positions. The results are shown in the Supplemen-
tary Materials.

In a brief summary, for most players (nearly 77% players in our analysis), the made process
and the missed process are different based on our testing procedures. This means most players
have their hot zones and cold zones on the court. The best defense strategy is to force those
players to shoot more on their cold zones than hot zones. For the offense side, the coach needs
to design offensive tactics, such as screening, to make their players have more comfortable
shots during the game.

5.3. Players classification. Naturally, a significant test and P -value can be applied to
classify point processes, as it measures how extremely different one point process is from
another under the null hypothesis that the two processes are the same. In this section we will
apply our proposed test framework to classify different players into different groups. The test
steps can be generalized as follows:

1. Randomly choose one player, and use his missed and made pattern as the benchmark.
2. Calculate the pairedwise P -value of made and missed pattern of the benchmark player

with all other players, denote as Pmissed(player1,player2) and Pmade(player1,player2).
3. Compare the calculated P -values with a predefined significant level(threshold), for ex-

ample, 0.025. If both Pmissed(player1,player2) and Pmade(player1,player2) are above a cer-
tain threshold, then classify it to the benchmark player’s group. Since we are doing multiple
testing, that is, comparing made and missed simultaneously, we applied the Bonferroni Cor-
rection to adjust the significance level αadj = 0.05/2 = 0.025.

4. Randomly choose another player as threshold, and repeat steps 1–3.
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TABLE 4
Classification results of five selected players

Benchmark player Players in same group

DeAndre Jordan N/A
DeMar DeRozan Rondae HollisJefferson, Cory Joseph
Giannis Antetokounmpo N/A
LeBron James Eric Bledsoe, Aaron Gordon, Jeff Green, James Johnson, Mario Hezonja, DAngelo

Russell, Andrew Harrison
Stephen Curry Jaylen Brown, Terry Rozier, Wilson Chandler, Trey Lyles, Reggie Bullock, DJ

Augustin, Stanley Johnson, Manu Ginobili, Justise Winslow, Lou Williams

Based on the procedures above, the classification results of five selected players are given
in Table 4. Based on results shown in Table 4, we see that Giannis Antetokounmpo and
DeAndre Jordan are two special players we can not find any players with similar missed and
made patterns. In addition, LeBron James’s shooting pattern is more like Power Forward.

5.4. LeBron James vs. Stephen Curry. Now, we will address the initial question we
posed: Do made and missed field goal attempts follow different spatial processes for Stephen
Curry? Additionally, we will explore whether LeBron James has a higher number of field
goal attempts in the region where he has a higher field goal percentage.

The answer to the first question is straightforward. Based on the KS test, KS test after
polar transformation, and our proposed test framework, all indicate that the patterns of made
and missed shots for Stephen Curry differ significantly at the 5% significance level. This
suggests that he has specific shooting areas where he achieves a higher success rate com-
pared to misses. However, at the 1% significance level, our proposed test (as well as the KS
test) would reject the null hypothesis, implying that his preferred shooting spots may not be
as strong or as numerous. Considering the injury he sustained this season, this outcome is
somewhat expected.

Regarding the second question, all the tests in our comparison indicate that LeBron James’
made patterns and missed patterns are statistically different. This suggests that, in certain
areas, he has a higher success rate in made shots compared to misses or vice versa. When we
examine the made and missed patterns in Figure 6, it becomes evident that he attempts more
field goals in the upper left 3-point line and has a higher success rate in that area as well.
However, around the upper right 3-point line and the free-throw area, his success rate is less
satisfactory, resulting in numerous missed attempts.

Furthermore, based on the classification results in Table 4, we can offer some suggestions
to coaches who aim to train specific types of players or compete against them. For example,
we observed that LeBron James has similar shooting and missed shot patterns to Eric Bledsoe,
Aaron Gordon, Jeff Green, James Johnson, Mario Hezonja, D’Angelo Russell, and Andrew
Harrison. From a coaching perspective, this suggests that those players could benefit from
a similar training plan as LeBron James, who was recognized as one of the most successful
players in the 2017–2018 NBA regular season and has had the highest points per game (PPG)
in the past 10 years. Additionally, if there is an effective defensive plan against players like
LeBron James, it could apply to other players as well.

6. Discussion. In this paper we propose a depth-based testing procedure for discrimi-
nating two spatial point processes. Building upon the polar coordinate system, we develop
a two-dimensional KS test on one-dimensional depth. Unlike several benchmark test pro-
cedures, our proposed methods apply a multivariate KS test with a one-dimensional depth
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function. The depth function then acts like a Box–Cox transformation, transforming data into
a different shape rather than reducing dimensions. By comparing with several benchmark
testing procedures, the numerical results showed that the proposed method can provide a
robust testing procedure under both null and alternative hypotheses. In the analysis of the
NBA shot charts data, our proposed method reveals several interesting findings for different
NBA players and hence provides more objective and principled analysis for shooting patterns
of the players in NBA. Compared with traditional point process methods for shot charts of
NBA players, our proposed testing procedures successfully discriminate the differences be-
tween made and missed shots of NBA players. For some top players, such as Anthony Davis,
LeBron James, and Giannis Antetokounmpo, they have smallest p-values. The comfortable
zones for those players are very obvious. In addition, we can see that Giannis Antetokoun-
mpo is a very distinct player in NBA. We cannot find any players who have similar missed
and made pattern with him.

Unlike previous studies that have focused on goal attempt frequency and accuracy of spe-
cific players (e.g., Reich et al. (2006)), our test framework aims to determine whether two
shot patterns differ from each other while also capturing the spatial randomness of field goal
attempts. Instead of using complex models to analyze the relationships between defenders
and offenders or estimating shoot intensity maps (e.g., Miller et al. (2014)), we have devel-
oped a simple yet powerful statistical test framework to differentiate spatial patterns based on
the center-outward tendency of players’ field-goal attempts.

Our framework significantly differs from the methodologies discussed in the Introduction.
It can effectively summarize the overall differences in shot patterns, making it particularly
valuable from coaching and recruiting perspectives. By using this approach, teams can iden-
tify and hire players with desired shot patterns, and its potential in classification allows re-
cruiters to quickly identify groups of players with similar shot patterns.

However, it also comes with certain limitations. First, our proposed test framework pri-
marily aims to determine if one spatial pattern significantly differs from another. But without
additional information, such as performance-related summary statistics of players, our model
lacks the ability to identify which shooting pattern is superior. Furthermore, in this research
we made the assumption that the shot locations adhere to a Poisson distribution. This as-
sumption stems from the belief that shot locations are independent of previous locations,
which unfortunately prevents us from capturing the temporal relationships between shot po-
sitions of teammates or defenders, as explored in other studies on spatiotemporal processes
(e.g., Cervone et al. (2016) proposed a framework based on Gaussian processes to model
the evolution of a basketball possession). Additionally, our analysis using shot chart data
is incapable of accounting for complicated time dependence, in contrast to studies such as
Franks et al. (2015) and Cervone et al. (2016) that utilize real-time tracking data. Therefore,
our model is unable to comprehend the influence of defenders on the shot effectiveness and
correlations between successful and missed shot attempts.

Some topics beyond the scope of this paper are worth further investigation. First, an exten-
sion of the proposed testing framework to more than two-dimensional spatial point processes
will provide broader applicability. Second, developing a depth-based testing procedure for
pair correlation functions of point processes is another exciting topic. Moreover, false dis-
covery rate control in multiple testing problems represents an interesting direction for future
work. From the application point of view, having a closer look at court locations with the
most significant effects will provide more data-driven information for NBA teams.
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