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Intensity estimation for Poisson processes is a classical problem and has been

extensively studied over the past few decades. Practical observations, however, often

contain compositional noise, i.e., a non-linear shift along the time axis, which makes

standard methods not directly applicable. The key challenge is that these observations

are not “aligned,” and registration procedures are required for successful estimation. In

this paper, we propose an alignment-based framework for positive intensity estimation.

We first show that the intensity function is area-preserved with respect to compositional

noise. Such a property implies that the time warping is only encoded in the normalized

intensity, or density, function. Then, we decompose the estimation of the intensity by

the product of the estimated total intensity and estimated density. The estimation of the

density relies on a metric which measures the phase difference between two density

functions. An asymptotic study shows that the proposed estimation algorithm provides

a consistent estimator for the normalized intensity. We then extend the framework to

estimating non-negative intensity functions. The success of the proposed estimation

algorithms is illustrated using two simulations. Finally, we apply the new framework in

a real data set of neural spike trains, and find that the newly estimated intensities provide

better classification accuracy than previous methods.

Keywords: intensity estimation, Poisson process, compositional noise, functional data analysis, function

registration

1. INTRODUCTION

The study of point processes is one of the central topics in stochastic processes and has been widely
used to model discrete events in continuous time. In particular, the Poisson process, a common
point process, has the most applications [1–3]. Classical examples include the arrivals of park
patrons at an amusement park over a period of time, the goals scored in an association football
match, and the clicks on a particular web link in a given time period. Recently, Poisson processes
have been used to characterize spiking activity in various neural systems [4, 5]. In order to use
a Poisson process in applications, one key step is to estimate its intensity function from a given
sequence of observed events.

The estimation of the intensity of a Poisson process has been studied extensively and various
methodologies have been proposed. If the intensity can be assumed to have a known parametric
form, then likelihood-based methods can be used to estimate the model parameters [6]. However,
in many cases, the shape of the intensity is unknown and estimation requires the implementation
of non-parametric methods. Indeed, non-parametric estimations provide more flexibility than
parametric methods and can better characterize the underlying intensity function. A number of
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approaches have been proposed over the past three decades,
including wavelet-based methods [2, 7, 8] and kernel-based
methods [1, 9, 10]. In the case where prior knowledge about the
process or shape of the intensity is known, Bayesian methods can
be adopted and they often lead to a more accurate estimation
[11–13].

Treating a neural spike train as a realization of Poisson
process, one can consider the example depicted in Figure 1.
In this case, the neural spiking activity, associated with certain
movement behavior [14], was recorded (see detail of the data
in section 3.3). The process was repeated for 30 trials and the
resulting spike trains are shown in Figure 1A. Notice that in each
repetition of the same movement, there is a gap in the spikes
that occurs at slightly different times with variable lengths. This
time shift in the gap in spikes is indeed an example of the notion
of phase variability or compositional noise, a central topic in
functional data analysis. The observed gap in spikes should be
reflected in the underlying Poisson intensity estimate. However,
using kernel-based estimation methods without accounting for
phase variability results in an intensity estimate (shown in red in
Figure 1B) that does not capture this gap in spiking activity. The
method introduced later in this paper does consider the presence
of phase variability and yields an estimate of the underlying
intensity of the spike train that clearly depicts the observed gap
in the spiking activity (shown in blue in Figure 1B). Therefore, it
is important to develop estimation procedures that consider the
presence of phase variability in repeated observations of the same
process.

One key concept in functional data analysis where phase
variability plays the central role is the notion of function
registration, or alignment. Indeed, function registration is an
important topic in functional data analysis and a significant
amount of research progress has been made over the past two
decades [15–19]. In order to properly register functions, one
must consider two types of variability present in data: phase
and amplitude variability. Phase variability describes the degree
of “unalignment” in the data, and amplitude variability is the
remaining variability in the vertical axis after alignment. The goal
of function registration is to align the functions by removing
phase variability. If analysis (such as principal component
analysis or regression) is conducted on data which are not well
aligned, one may obtain poor or undesired results.

While function registration has been extensively investigated,
the notion of aligning point processes with compositional noise
has not been well studied — all aforementioned intensity
estimation methods are based on the assumption there is no
phase variability in the observed processes. However, as indicated
in the above spike train example, that is not always a reasonable
assumption. To understand the phase variability in point process
observations, recent studies on intensity estimation in Poisson
process have begun to identify and remove compositional
noise during the estimation procedure. For example, Bigot and
colleagues examined the estimation of the underlying intensity
function for a set of linearly shifted Poisson processes [20].
They assumed that the intensity function is periodic and each
realization of the process is warped according to a linear shift
in time that follows a known distribution. Under the stated

assumptions, the authors derived a wavelet-based estimator. They
argued that the assumption of a linear shift in the observed
processes is a reasonable assumption, particularly in an example
of DNA Chip-Seq data. However, there are many other cases
where it is not reasonable to assume a simple linear shift for
the phase variability such as examples in [15, 19]. As a result,
restricting the warping function to be strictly linear shifts may
limit the general applicability of their method. In another recent
study, Panaretos and Zemel proposed to separate amplitude
and phase variation in order to align point processes [21].
Basically, they extended the notion of the separation of phase and
amplitude variation in functions to that of point processes. We
point out that Panaretos and Zemel’s work focues on estimation
of the probability measure and not for density estimation [see
section 3.4 of [21]]. In contrast, our goal in this study is clearly
intensity estimation.

In this paper we propose a new framework for intensity
estimation of a Poisson process with compositional noise. We
show that the noise is only encoded in the normalized intensity,
or density, function. The estimation is based on our proposed
metric which measures the phase difference between two density
functions so the notion of the Karcher mean can be applied in the
given framework. Since the only parameter in the method is the
bandwidth for the kernel density estimate, the proposed method
is still non-parametric.

A recent study on Poisson process with compositional noise
adopts the generalized linearmodel (GLM)where the phase noise
is addressed by the well-known Dynamic Time Warping (DTW)
method [6]. We point that the goals and approaches in our paper
and this GLM-DTW study are very different:

1. In our study, we assume the observed point processes are
random samples (with phase variability) from a Poisson
process and there is no other co-variate. In contrast, the GLM-
DTW study adopts a GLM framework— conditioned on some
covariates, the process is Poisson. These co-variates are needed
for encoding/decoding purposes.

2. Our goal is to esimate the deterministic intensity function
from these given samples. In contrast, the GLM-DTW study
focuses on building proper model between point process
observations and underlying covariates.

3. We conduct warping transformation in the velocity space
which is an area-preserving procedure (see detail in section
2.1.1). This invariance will preserve the probability for
the total number of events in the process, a critical
measure for the non-linear transformation within the time
domain. In contrast, the GLM-DTW study does not have
such invariance in its framework, which often leads to a
degenerate estimate.

The rest of this paper is organized as follows. In section
2, we present the new framework for positive and non-
negative intensity estimation and discuss its mathematical and
computational properties. Consistency theory on the estimation
algorithm is also examined. The estimations on positive and
non-negative intensity are illustrated with two simulations,
respectively, in section 3. We then show the application of
intensity estimation in a real dataset of neural spike trains.
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FIGURE 1 | Intensity estimation example. (A). 30 spike train observations. (B). Estimated intensities by considering (solid blue) and not considering (dashed red)

compositional noise.

Section 4 summarizes the work. Finally, all mathematical details
are given in the Appendices.

2. METHODS

In this section, we present the new framework for intensity
estimation of a Poisson process with non-linear time warping.

2.1. Positive Intensity Estimation
We will at first focus on positive intensity functions, where
compositional noise is represented with time warping. We will
review the basics of Poisson processes [22] and the representation
of time warping in function space [23].

2.1.1. Review of Poisson Process and Time Warping

Representation
A Poisson process on the time domain [0, 1] is a special type
of counting process N(t), t ∈ [0, 1]. For simplification of
notation, we only examine the domain [0, 1] in this paper, and
the framework can be easily adapted to any finite time interval.
In the classical theory of point processes, a Poisson process is
defined based on an intensity function λ(t) ≥ 0 and satisfies the
following two conditions [22]:

1. Disjoint intervals have counts that are independent.
2. The number of events in an interval (a, b) ⊂ [0, 1] follows a

Poisson distribution with mean
∫ b
a λ(t)dt.

We denote a Poisson process with intensity λ(t) as PP(λ(t)). For
distinction, a Poisson distribution with mean µ is denoted as
Poisson(µ), and a Poisson probability mass function with mean
µ at k is denoted as Poisson(k;µ) = e−µµk/k!.

We represent compositional noise with time warping
functions. Since the intensity of a Poisson process is a function,
we study the representation of time warping in the function
space. Let Ŵ be the set of all warping functions, where time

warping is defined as an orientation-preserving diffeomorphism
of the domain [0, 1]. That is,

Ŵ = {γ :[0, 1] → [0, 1]|γ (0) = 0, γ (1) = 1, 0 < γ̇ < ∞}.

Elements of Ŵ form a group with function composition as the
group action, and the identity in this group is the self-mapping
γid(t) = t. For any function h ∈ L

2([0, 1]), we will use ‖h‖ to

denote its L2 norm (
∫ 1
0 h(t)2dt)1/2.

There are three different types of (right) group actions about
time warping that can occur in the function space:

1. Amplitude-preserved: f → f ◦ γ ,
2. Area (L1 norm)-preserved: f →

(

f ◦ γ
)

γ̇ : =
(

f ; γ
)

,
3. Energy (L2 norm)-preserved: f →

(

f ◦ γ
)√

γ̇ : =
(

f , γ
)

,

where ◦ denotes the conventional function composition. The
properties on associativity and isometry of these three group
actions are summarized in Table 1. In particular, the amplitude-
preserved group action is the conventional registration for
functions with phase variability and has been extensively studied
over the past two decades [24–26]. The enery-preserved group
action plays an essential role in the Fisher-Rao registration
framework [27], where this action is applied in the Square-
Root Velocity Function (SRVF) space (note: it is critical that in
the Fisher-Rao framework there is a one-to-one correspondence
between the energy-preserved SRVF space and the amplitude-
preserved observational function space). In the following sections
of this paper, we will show that the compositional noise in the
Poisson process intensity function is properly characterized by
the area-preserved group action.

2.1.2. Poisson Process With Compositional Noise
Before formally stating the main problem, we review the
classical estimation problem in Poisson processes: Given a set of
independent realizations from a Poisson process on [0, 1], how
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TABLE 1 | Properties of the three group actions.

Preserved Associativity Isometry

Amplitude (f ◦ γ1) ◦ γ2 = f ◦ (γ1 ◦ γ2) ‖f1 ◦ γ − f2 ◦ γ ‖L∞ = ‖f1 − f2‖L∞

Area ((f; γ1 ); γ2) = (f; (γ1 ◦ γ2)) ‖(f1; γ )− (f2; γ )‖L1 = ‖f1 − f2‖L1

Energy ((f , γ1), γ2) = (f , (γ1 ◦ γ2)) ‖(f1, γ )− (f2, γ )‖L2 = ‖f1 − f2‖L2

can we estimate the underlying intensity function? By notation,
the set of realizations are given in the following form,

Ri = (ri1, · · · , riki ) ∼ PP(λ(t)),

where ki ∼ Poisson
(

∫ 1
0 λ(t)dt

)

, i = 1, 2, . . . , n. Various

approaches have been developed to address this problem, which
include penalized projection estimators [28], wavelet methods
[7, 29], and estimators based upon thresholding rules [8].

In this paper, we assume the observed data are not {Ri}, but a
warped version in the form

Si = (si1, · · · , siki ) = γ−1
i (Ri) = (γ−1

i (ri1), · · · , γ−1
i (riki )),

where γi is a random time warping in Ŵ, i = 1, · · · , n. That is,

Si = γ−1
i (Ri), with Ri ∼ PP(λ(t)), γi ∈ Ŵ. (1)

Given observations {Si}, our goal is still to estimate the underlying
intensity λ(t). Tomake themodel identifiable, we add a constraint
that themean of {γi} needs to be a scaled version of γid (The detail
on assumptions is clearly provided in section 2.2). Since the time
warping can be in any non-linear form, this estimation problem
is a significant challenge. A recent study only examines the case
when the warping is a simple linear shift along the time axis [20].

As the warping function γi is random, the warped process
γ−1
i (Ri) is no longer a Poisson process, but a Cox process. Here

we study, “Conditional on γi, is γ−1
i (Ri) still a Poisson process?

If this is true, what is the intensity function of that Poisson
process?” Our answer is yes to the first question and the intensity
function of the new Poisson process is given as follows.

Lemma 1. Suppose R is a Poisson process with intensity λ(t) on
[0, 1] and γ ∈ Ŵ is a given time warping function. Then γ−1(R) is
also a Poisson process with intensity λ

(

γ (t)
)

γ̇ (t).

Proof: If R is a Poisson process, then the number of
events of R in the time interval (a, b) is independent
of the number of events of R in the time interval (c, d)
if (a, b) ∩ (c, d) = ∅. Since γ (t) is strictly increasing,
(a, b) ∩ (c, d) = ∅ ⇔ (γ (a), γ (b)) ∩ (γ (c), γ (d)) = ∅.
Hence, the number of events in (γ (a), γ (b)) is also independent
of the number of events in (γ (c), γ (d)).

For any k ∈ {0, 1, · · · } and sub-interval [t, t + 1t] ⊂ [0, 1],

P(k events of γ−1(R) are in [t, t + 1t])

= P(k events of R are in [γ (t), γ (t + 1t)])

= Poisson






k;

γ (t+1t)
∫

γ (t)

λ(v)dv







= Poisson



k;
t+1t
∫

t

λ(γ (u))γ̇ (u)du



 .

The last equality holds simply by the change of variable v = γ (u).
Therefore,

γ−1(R) ∼ PP
(

λ(γ (u))γ̇ (u)
)

.

A direct result from Lemma 1 is that given γi, Si is also a Poisson
process and

Si|γi = γ−1
i (Ri)|γi ∼ PP(λ(γi(t))γ̇i(t)).

Based on the theory of Poisson processes, the intensity function
λ(t) can be decomposed into the product of the total intensity 3

and the density function f (t), where

3 =
∫ 1

0
λ(t)dt and f (t) = λ(t)/3.

Therefore, the intensity estimation problem can be reduced to
density estimation and scalar total intensity estimation.

Note that for i = 1, · · · , n,

∫ 1

0
λi(t)dt =

∫ 1

0
λ(γi(t))γ̇ (t)dt =

∫ 1

0
λ(s)ds = 3.

That is, 3 is constant with respect to time warping and
the intensity function is area-preserved with respect to
compositional noise. Hence, the density of the events in Si,
given γi, can be written as fi(t) = λi(t)/3 = λ(γi(t))γ̇i(t)/3.
This expression indicates that the time warping is encoded
in the density function, and independent of total intensity.
By the theory of Poisson processes, the number of events in
each process follows a Poisson distribution with mean 3. For
a set of given observations {Si}, 3 can be easily estimated
using a conventional maximum likelihood estimate. Therefore,
the intensity estimation problem reduces to estimating the
underlying density f . Given {Si}, we propose a modified kernel
method to estimate density functions {fi}, and then use these
densities to estimate f . This whole procedure is described in
detail in section 2.1.5.
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2.1.3. Phase Distance Between Positive Probability

Density Functions
In this paper, we focus on a metric-based method to estimate the
underlying density f . Metric distances between density functions
is a classical topic and a number of measures have been proposed,
for example, the Bhattacharyya Distance [30], the Hellinger
Distance [31], the Wasserstein Distance [32], and the elastic
distance beween densities based upon the Fisher-Rao metric
[33]. Suppose f1 and f2 are two density functions on [0,1] with
cumulative distribution functions F1 and F2, respectively. Then,
these metrics are defined as:

• Wasserstein Distance: dW(f1, f2) = ‖F−1
1 − F−1

2 ‖
• Bhattacharyya Distance: dB(f1, f2) = − log

(

∫ √

f1(t)f2(t)dt
)

• Hellinger Distance: dH(f1, f2) = 1√
2
‖
√

f1 −
√

f2‖

• Fisher-Rao Distance: dFR(f1, f2) = arccos
(

∫ 1
0

√

f1(t)
√

f2(t)dt
)

Note that the Fisher-Rao metric between two density functions
is similar to the Hellinger Distance (arc length vs. chord length)
[33].

Based on the generative model in Equation (1), the difference
between the true underlying density function and the noise-
contaminated density is the time warping along the time axis.
Such a difference is characterized as the phase difference and we
expect that a metric measuring phase difference will be purely
based on the warping function between two densities. That is,
the distance between f1 and f2 will only depend on γ if f1 =
(f2; γ ). However, none of the above metrics purely measure this
phase difference between two density functions. We aim to find
a metric that can properly characterize such phase difference.
In this paper, we will define a new distance between positive
densities which properly measures their phase difference. The set
of all positive density functions on [0, 1] is denoted as P.

We note that for any densities f1, f2 ∈ P, their cumulative
distribution functions F1, F2 are warping functions in Ŵ. By the
group structure of Ŵ, it is straightforward to find that the optimal
warping function between f1 and f2 (i.e., γ ∗ ∈ Ŵ such that
f1 = (f2◦γ ∗)γ̇ ∗ or F1 = F2◦γ ∗), is unique and has a closed-form
solution given by

γ ∗ = F−1
2 ◦ F1. (2)

Based on this result, it is natural to define a distance thatmeasures
the phase difference by measuring how far the warping function
is from the identity warping function, γid. In other words, the
smaller the distance between the warping function and γid, the
less warping that is required between the two densities. One
definition of the distance metric is given as follows.

Definition 1. For any two functions f1, f2 ∈ P, we define an
intrinsic distance, dint , between them as:

dint(f1, f2) = arccos
〈

1,
√

γ̇

〉

(3)

where γ is the optimal time warping between f1 and f2 (i.e., f1 =
(f2 ◦ γ )γ̇ ).

This definition of phase distance has been used in the Fisher-
Rao framework [19]. This distance is intrinsic which measures
the arc-length between

√
γ̇ and 1 in the unit sphere S∞ (SRVF

space of Ŵ). Note that the definition of phase distance in P is not
unique. We can also define an extrinsic distance as follows:

Definition 2. For any two functions f1, f2 ∈ P, we define an
extrinsic distance, dext , between them as:

dext(f1, f2) = ‖1−
√

γ̇ ‖ (4)

where γ is the optimal time warping between f1 and f2 (i.e., f1 =
(f2 ◦ γ )γ̇ ).

Notice that because the optimal warping function γ =
F−1
2 ◦ F1, the distance dext(f1, f2) can also be written as

‖1 −
√

F−1
2 ◦̇F1‖ = ‖

√

Ḟ−1
1 −

√

Ḟ−1
2 ‖. The commonly-used

Wasserstein distance dW is

dW(f1, f2) =
∥

∥F−1
1 − F−1

2

∥

∥ ≤ 2

∥

∥

∥

∥

√

Ḟ−1
1 −

√

Ḟ−1
2

∥

∥

∥

∥

= 2dext(f1, f2)

This shows that the consistency results that hold for dext will also
hold for dW , but the reverse is not true in general. Similar to
the Wasserstein and Hellinger distances, this dext metric is also
a proper distance. The detailed proof in given in Appendix A.
While dext is not isometric like Bhattcharya and Hellinger, it is
the only metric (within these four) that specifically characterizes
the phase difference between f1 and f2.

Either dint or dext can be used to estimate the underlying
density f . In this paper, we choose to focus on the extrinsic
distance dext for two reasons: (1) Computational algorithms
based upon the extrinsic distance are usually more efficient than
those based on the intrinsic distance. (2) The extrinsic distance
provides a closed-form Karcher mean representation (see the
definition next), which plays an essential role in developing the
asymptotic theory for our estimator in section 2.2.

2.1.4. Karcher Mean
The notion of the Karcher mean was used on the set of warping
functions where an extrinsic distance between warping functions
is adopted [14]. That is, assuming γ1, · · · , γn ∈ Ŵ is a set of
warping functions, their Karcher mean γ̄ can be defined as

γ̄ = argmin
γ∈Ŵ

n
∑

i=1

||
√

γ̇ −
√

γ̇i||2.

It was shown in [14] that this Karcher mean has a closed-form
solution:

√

˙̄γ =
∑n

i=1

√
γ̇i

‖
∑n

i=1

√
γ̇i‖

,

where
√ ˙̄γ is the SRVF of γ̄ .

Similar to the Karcher mean of a set of warping functions in
Ŵ, we can define the Karcher mean of a set of density functions
in P. This definition is based on the newly-defined phase distance
dext in Equation (4).
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Definition 3. We define the Karcher mean µn of functions
f1, · · · , fn ∈ P as the minimum of the sum of squares of distances
in the following form:

µn = argmin
µ∈P

n
∑

i=1

dext(µ, fi)
2. (5)

Based on the closed-form solution for the Karcher mean of a set
of warping functions, we can efficiently compute the Karcher
mean in Equation (5) using the following algorithm.

Algorithm 1: Karcher Mean Computation

Given a set of density functions f1, . . . , fn ∈ P, and their
cumulative distribution functions F1, . . . , Fn, respectively.

1. Initialize f0 = fj for any j = 1, 2, . . . , n.

2. Find γ ∗
j = F−1

0 ◦ Fj, j = 1, 2, . . . , n.

3. Compute the Karcher mean γ̄ of {γ ∗
i
−1}nj=1, with formula

√

˙̄γ =
∑n

j=1

√

γ̇ ∗
j

−1

‖
∑n

j=1

√

γ̇ ∗
j

−1‖
.

4. f̂ = (f0 ◦ γ̄−1) ˙̄γ−1 is the Karcher mean of f1, . . . , fn.

The algorithm for computing the Karcher mean of functions
in P is illustrated with a simple example in Figure 2. The 10
yellow lines in the figure denote the density functions of Beta
distribution on the domain [0, 1] in the form f (x;α,β) ∝
xα−1(1− x)β−1. Here the parameters α takes value 1, 1, 1.5, 2, 2,
2.5, 3, 3, 4, 5, and β takes value 4, 3, 3, 2.5, 2, 2, 1.5, 1, 1, 2 for the
10 functions, respectively. The Karcher mean of these functions
was computed using Algorithm 1 and the result is shown as the
thick red line in the figure.

2.1.5. Intensity Estimation Method
Since the Karcher mean of a set of density functions (computed
under dext) is itself a density function, we use the Karcher mean
as an estimate of the underlying density of the process. In our
proposed estimation method, the Karcher mean, as computed
using Algorithm 1, is used in conjunction with the MLE of
the total intensity of the process to produce an estimate of
the intensity function. Note that the computation for Karcher
mean using Algorithm 1 is based on the assumption that each
warped density fi(t) is already known, but practical data are only
Poisson process realizations. In this section, we propose a kernel
estimation procedure to estimate fi(t).
Modified Kernel Density Estimation: Kernel density estimation
has been well studied in statistics literature and it is well known
that the standard kernel density estimator has good asymptotic
properties when the domain is the real line. However, when the
domain is a compact set such as [0, 1] in this paper, the standard
kernel density estimator cannot be directly used. We adopt here
a reflection-based method to address this issue [34–36].

Suppose x1, . . . , xm are observations in [0, 1] whose density is
given by f ∈ P. The standard kernel density estimator is given

FIGURE 2 | Karcher mean of 10 Beta density functions.

by f̃ (t) = 1
mh

m
∑

j=1
K

(

t−xj
h

)

, where K(·) is a kernel function and

h denotes the kernel width. Note that this estimated density is
defined on the real line (−∞,∞), and the section within [0, 1] in
general is not a density function itself. To simplify the estimation
procedure, we can choose kernel functions with compact support
within [−1, 1]. That is, K(t) = 0 for |t| > 1.

Here we propose a two-step modification of the estimate f̃ (t).

At first, we wrap around f̃ within the domain [0, 1], and denote

the new function as
˜̃
f , a density function on [0, 1]. Secondly,

we add a small positive constant to
˜̃
f , and then normalize the

sum to be a density function. This step is to assure that the
normalized function is positive on [0, 1], a necessary condition
for the existence of the warping functions used in the distance
dext . The modified kernel density estimation can be summarized
in the following algorithm.

Algorithm 2: Modified Kernel Estimation

Suppose x1, . . . , xm are observations in [0, 1] whose density is
given by f .

1. Calculate the standard kernel-based estimate, f̃ (t) =
1

mh

m
∑

j=1
K

(

t − xj

h

)

, t ∈, using an appropriate bandwidth, h,

and a kernel function K with compact support (e.g., a Beta
density function).

2. Update the estimate by
˜̃
f (t) = f̃ (t) + f̃ (−t) + f̃ (2 − t). The

updated estimate is defined only for t ∈ [0, 1].

3. f̂ (t) = ˜̃
f (t)

m

m+ 1
+ 1

m+ 1
, t ∈ [0, 1] is the modified estimate.

Estimation Algorithm: Estimation of the intensity of the
process occurs in two independent components. First, the
total intensity 3 can be easily computed with a standard MLE
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procedure. Second, the Karcher mean of the estimated densities
is used to estimate f (t). This estimation algorithm is given
as follows.

Algorithm 3: Intensity Estimation Algorithm

Given a set of observed processes Si with number of events
being ki, i = 1, . . . , n,

1. Estimate 3 by itsMLE: 3̂ = 1
n

n
∑

i=1
ki.

2. Use Algorithm 2 to estimate the density of each observed

process, f̂i(t), i = 1, · · · , n.
3. Estimate the intensity function of each process by the formula

λ̂i(t) = 3̂f̂i(t), i = 1, · · · , n.
4. Use Algorithm 1 to estimate the overall underlying density,

f̂ (t), as the Karcher mean of {f̂i}.
5. Estimate the underlying intensity λ(t) in the original process

using:

λ̂(t) = 3̂f̂ (t).

2.2. Asymptotic Theory on Consistency
Asymptotic properties of estimators are often of interest since
these properties provide reasonable certainty that the ground-
truth parameters can be appropriately estimated by the given
algorithms. In this section, we provide asymptotic theory on the

density estimator f̂ in Algorithm 3. Our estimation is based on
the model

λi = (λ ◦ γi)γ̇i, i = 1, · · · , n,

where λ is the underlying intensity function and γi ∈ Ŵ, i =
1, . . . , n, are a set of warping functions. By Lemma 1, each
observation Si is a Poisson process realization with intensity λi.
Given {Si}, Algorithm 3 provides an estimation procedure for λ.
As the total intensity 3 is independent of time warpings, our
asymptotic theory will focus on the normalized intensity, i.e.,
intensity function f = λ/3. We mathematically prove that the
proposed algorithm provides a consistent estimator for f . The
asymptotic theory is based on sample size n as well as the total
intensity 3. Here we only provide result on the main theorem.
All lemmas that lead to the theorem can be found inAppendix B.

Before we state the main theorem, we list all assumptions as
follows:

1. The observations are a sequence of Poisson process
realizations {Si}, and Si follows intensity function

λi = (λ ◦ γi)γ̇i. 3 =
∫ 1
0 λ(t)dt is the total intensity.

f = λ/3 and fi = λi/3 = (f ; γi).
2. The density function f is continuous on [0,1]. Also, there exist

mf ,Mf > 0 such that f (t) ∈ [mf ,Mf ], for any t ∈ [0, 1].
3. γi(t), t ∈ [0, 1], i = 1, · · · , n are a set of independent warping

functions. The SRVFs of their inverses
√

γ̇−1
i (t) distribute

around
√

γ̇id = 1 on the Hilbert unit sphereH∞. In particular,
E(

√

γ̇i(t)) ≡ β > 0 and there exist mγ ,Mγ > 0 such that
√

γ̇−1
i (t) ∈ [mγ ,Mγ ], for any t ∈ [0, 1]. It is important to

note that
√

γ̇−1
i (t) is a point on the Hilbert unit sphere. As a

result, it is easy to show that assumingE

(

√

γ̇−1
i (t)

)

= β > 0

is equivalent to assuming that the extrinsic mean of {
√

γ̇−1
i (t)}

is 1.
4. The total intensity 3 can vary in the form of a sequence

{3m}∞m=1. We assume the sequence goes to ∞ with 3m ≥
α log(m),α > 1 for sufficiently largem.

5. The bandwidth of the kernel density estimator in Algorithm
2 is chosen optimally. That is, for a sequence of r events, the
bandwidth hr satisfies hr → 0 and rhr → ∞ when r → ∞.

Theorem 1. Given the five conditions listed above, let f̂ be the
density function estimated with Algorithm 3. Then we have

lim
n→∞

lim
m→∞

dext(f̂ , f ) = 0 a.s.

Proof: By the basic property of a Poisson process, the event times
in the observation Si are an i.i.d. sequence with density function

fi = (f ; γi), i = 1, · · · , n. Denote f̂i as the estimated density

function by the modified kernel estimation method. Then f̂i(t) >

0 for any t ∈ [0, 1]. Based on the group structure of Ŵ, there exists

a unique γ̂i ∈ Ŵ such that f̂i = (f ; γ̂i).
Here we compute the Karcher mean of {f̂i}. For any density

function g, we have

n
∑

i=1

d2ext(f̂i, g) =
n

∑

i=1

d2ext((f ; γ̂i), g) =
n

∑

i=1

∥

∥

∥

(

1, γ−1
(f ;γ̂i)

)

−
(

1, γ−1
g

)
∥

∥

∥

2

=
n

∑

i=1

∥

∥

∥

(

1, γ̂−1
i ◦ γ−1

f

)

−
(

1, γ−1
g

)
∥

∥

∥

2

=
n

∑

i=1

∥

∥

∥

(

1, γ̂−1
i

)

−
(

1, γ−1
g ◦ γf

)
∥

∥

∥

2
.

Denote the Karcher mean of {γ̂−1
i } as ˆ̄γ . Then the above sum of

squares is minimized when γ−1
g ◦ γf = ˆ̄γ . That is, γ−1

f̂
= ˆ̄γ ◦

γ−1
f

. By isometry on time warping functions and the triangular

inequality,

dext(f̂ , f ) =
∥

∥

∥

∥

(

1, γ−1

f̂

)

−
(

1, γ−1
f

)

∥

∥

∥

∥

=
∥

∥

∥

(

1, ˆ̄γ ◦ γ−1
f

)

−
(

1, γ−1
f

)
∥

∥

∥

=
∥

∥

∥

(

1, ˆ̄γ
)

− 1
∥

∥

∥
≤

∥

∥

∥

(

1, ˆ̄γ
)

− (1, γ̄ )

∥

∥

∥
+ ‖(1, γ̄ ) − 1‖.

By Lemma 5, we have shown that ‖(1, γ̄ ) − 1‖ a.s.−→ 0 when n →
∞. Note that ‖

(

1, ˆ̄γ
)

− (1, γ̄ ) ‖ depends on the total intensity

3m and sample size n. We will show that this term also converges
to 0 whenm is large (for any fixed n).

To simplify the notation, we denote ai =
√

γ̇−1
i , âi =

√

˙̂γ−1
i , i = 1, · · · , n. Let the number of events in Si be ni. Then
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ni is a random variable following Poisson distribution with mean

3m. By Lemma 5, ni
a.s.−→ ∞ whenm → ∞. Using Lemma 3,

∥

∥âi − ai
∥

∥ =
∥

∥(1, γ̂−1
i )− (1, γ−1

i )
∥

∥

=
∥

∥

∥
(1, γ̂−1

i ◦ γ−1
f

)− (1, γ−1
i ◦ γ−1

f
)
∥

∥

∥

=
∥

∥

∥
(1, γ−1

(f ;γ̂i))− (1, γ−1
(f ;γi))

∥

∥

∥

=
∥

∥

∥

∥

(1, γ−1

f̂i
)− (1, γ−1

fi
)

∥

∥

∥

∥

a.s.−→ 0

when ni → ∞. Therefore, ||âi − ai||
a.s.−→ 0, i = 1, · · · , n, when

m → ∞.
Let ¯̂a = 1

n

∑n
i=1 âi and ā = 1

n

∑n
i=1 ai. Then, || ¯̂a − ā|| a.s−→ 0

whenm → ∞. Hence,

∥

∥

∥

(

1, ˆ̄γ
)

− (1, γ̄ )

∥

∥

∥
=

∥

∥

∥

∥

∥

∥

¯̂a
∥

∥

∥

¯̂a
∥

∥

∥

− ā

‖ā‖

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

¯̂a
∥

∥

∥

¯̂a
∥

∥

∥

−
¯̂a

‖ā‖

∥

∥

∥

∥

∥

∥

+
∥

∥

∥

∥

∥

¯̂a
‖ā‖ − ā

‖ā‖

∥

∥

∥

∥

∥

≤ 2
∥

∥

∥

¯̂a− ā
∥

∥

∥
/ ‖ā‖ a.s.−→ 0 (whenm → ∞)

Note that the convergence of ‖
(

1, ˆ̄γ
)

− (1, γ̄ ) ‖ is for any sample

size n. Finally, we have proved that

lim
n→∞

lim
m→∞

dext(f̂ , f ) = 0 a.s.

2.3. Extension to Non-negative Intensity
Functions
The method developed thus far applies only to strictly positive
density functions. In practice, this may be a quite restrictive
condition and it is desired to extend the method to non-negative
density functions. Our estimation is still based on the model

λi = (λ ◦ γi)γ̇i, i = 1, · · · , n,

where λ ≥ 0 is the underlying intensity function and γi ∈
Ŵ, i = 1, . . . , n, are a set of warping functions. In this section,
we propose to extend Algorithm 3 to estimate this non-negative
λ with Poisson process observations.

2.3.1. Representation of Non-negative Intensities
For estimation, our focus is still on the density function f = λ/3

as the total intensity 3 is independent of the time warping. Let
F denote the CDF of f . Then F(0) = 0, F(1) = 1. However,
as f is non-negative, F may not be strictly increasing on the
domain [0, 1]. To simplify the representation, we assume that F is
strictly increasing except being constant on a finite number, K, of
non-overlapping intervals (This finiteness assumption would be
sufficient for non-negative intensities in practical use). Let F =
{F ◦ γ |γ ∈ Ŵ} denote the set of CDFs which are warped versions
of F, and Fi be the CDF of fi = λi/3. Then Fi = F ◦ γi ∈ F will
also be constant on corresponding intervals.

In general, let h, g be two density functions whose CDFs H,G
are in F . Then H and G are strictly increasing except being
constant on K non-overlapping intervals. We define Ŵh,g =
{γ ∈ Ŵ|h = (g ◦ γ )γ̇ } = {γ ∈ Ŵ|H = G ◦ γ }. By
construction, Ŵh,g 6= ∅. We denote the K constant intervals
forH andG are [a1, b1], · · · , [aK , bK] and [c1, d1], · · · , [cK , dK],
respectively. For any γ ∈ Ŵh, g , we must have γ (ak) = ck and
γ (bk) = dk for k = 1, · · · ,K. To include the boundary points,
we denote b0 = d0 = 0 and aK+1 = cK+1 = 1. It is our goal to
characterize all warping functions in Ŵh, g .

Note that the function G is strictly increasing on each
interval [dk, ck+1], k = 0, 1, · · · ,K. Now we define a mapping
Gk :[dk, ck+1] → as follows,

Gk(s) = G(s), s ∈ [dk, ck+1].

It is apparent that Gk is strictly increasing on its domain
[dk, ck+1], k = 0, 1, · · · ,K. For any γ ∈ Ŵh,g and t ∈ [bk, ak+1],
γ (t) is in [dk, ck+1]. Hence, H(t) = G(γ (t)) = Gk(γ (t)), and
γ (t) = G−1

k
◦ H(t).

We then focus on the regions [ck, dk], k = 1, · · · ,K where
G is constant (note: G−1 does not exist). Note that H(ak) =
G(γ (ak)) = G(ck) = G(dk) = G(γ (bk)) = H(bk). Hence, any
γ ∈ Ŵ with γ (ak) = ck, γ (bk) = dk satisfies that H(t) = G(γ (t))
for any t ∈ [ak, bk]. Finally, we have shown that the set Ŵh,g can
be characterized as follows,

Ŵh,g = {γ ∈ Ŵ|γ (t) = G−1
k

◦H(t), t ∈ [bk, ak+1], k = 0, · · · ,K,
γ (ak) = ck, γ (bk) = dk, k = 1, · · · ,K}.

2.3.2. Estimation of Non-negative Intensities
In section 2, we have defined a phase distance dext between two
positive density functions. Here we generalize the distance to
non-negative densities.

Definition 4. Let h, g be two density functions whose CDFs H,G
are in F . We define the distance between h and g as

D(h, g) = inf
γ∈Ŵh,g

‖1−
√

γ̇ ‖ (6)

We present three properties of this distance below.

1. D is a generalization of the distance dext – for strictly positive
densities h, g, the set Ŵh,g has single element G−1 ◦ H, and
therefore D(g, h) = dext(g, h).

2. D is a proper distance. The proof of this property is similar to
that for the distance dext (see Appendix A) and is, therefore,
omitted here.

3. Denote the constant intervals for H and G as
[a1, b1], · · · , [aK , bK] and
[c1, d1], · · · , [cK , dK], respectively. Then the infimum of
‖1−

√
γ̇ ‖ over Ŵh,g can be uniquely reached. Specifically, let

γ ∗(t) = arginf
γ∈Ŵh,g

‖1−
√

γ̇ ‖
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Then,

γ ∗(t) =







G−1
k

◦ H(t) t ∈ [bk, ak+1], k = 0, 1, · · · ,K
(

dk − ck

bk − ak

)

(t − ak)+ ck t ∈ [ak, bk], k = 1, · · · ,K

(7)
The proof of this property is based on the following fact
[shown in [37]]: Assume γ is a mapping in Ŵ0 = {γ :[a, b] →
[c, d]|γ (a) = c, γ (b) = d, γ̇ (t) > 0, t ∈ [a, b]}. Then, the
distance ‖1 −

√
γ̇ ‖ is minimized over Ŵ0 when γ is a linear

function from [a, b] to [c, d].

Estimation Method: The estimation of non-negative
intensities follows the same procedure as in the Intensity
Estimation Algorithm (Algorithm 3), where Algorithm 1 calls
for the Karcher mean computation. However, in this case we
need to update the second step of Algorithm 1 (computation of
optimal warping between F0 and Fj), the new optimal form in
Equation (7) is adopted. Analogous to the proof in section 2.2,
one can demonstrate that the estimated non-negative intensity
is also an consistent estimator [under the metric D in Equation
(6)]. We omit the details in this manuscript to avoid repetition.

3. EXPERIMENTAL RESULTS

In this section we will demonstrate the proposed intensity
estimation using two simulations – one is for a strictly positive
intensity, and the other is for an intensity with zero-valued sub-
regions. We will also apply the new method in a real spike train
dataset and evaluate the classification performance using the
estimated intensities.

3.1. Simulation 1: Poisson Process With a
Positive Intensity Function
Twenty independent realizations of a non-homogeneous Poisson
process were simulated with the intensity function λ(t) =
100(3 + 2 sin((8t − 1/2)π)) on [0, 1]. This intensity function
and these 20 original processes are shown in Figure 3A. Because
of the non-constant intensity, there is a higher concentration
of events during intervals with high intensity and fewer events
during intervals with low intensity.

We then generate 20 warping functions {γi}20i=1 in the
following form:

γi(t) =
eait − 1

eai − 1
. (8)

Here ai are equally spaced between −2 and 2, i = 1, · · · , 20.
These warping functions are shown in Figure 3B. We then warp
the 20 independent Poisson process using these 20 warping
functions, respectively, by the formula in Equation (1). The
resulting warped processes are shown in Figure 3C. Comparing
these processes with those in Figure 3A, we can see that the
positive relationship between number of events in each sub-
region and the intensity value no longer exists. Given these
noisy Poisson process observations, we aim to reconstruct the
underlying intensity function λ(t).

The 20 true and estimated warped density functions are shown
in the top and bottom panels, respectively, of Figure 4A. We

can see that the kernel method provides a reasonable estimation
for the warped intensity functions. The intensity function λ(t)
is estimated for two different cases: (1) the time warping is
ignored during estimation (i.e., naive method), and (2) the time
warping is accounted for in the estimation using the proposed
method. Both of these estimates are displayed with the true
intensity function in Figure 4B by 3 different colors: true (black),
proposed (blue), and naive (green). The naive estimated intensity
underestimates the true intensity in the middle two-thirds of
the curve and the true waveform pattern is not revealed. In
contrast, the proposedmethod provides amuch better estimate of
the true intensity function. To compare with more methods, we
also show estimation result using Fisher-Rao metric (cyan) [33]
and Wasserstein distance (red) [32] in Figure 4B. For accuracy
measurement, the L

1-, L2-, and L
∞- norms are adopted to

measure the error in each estimation method and the reuslt is
shown in Table 2. We can see that the proposed method has the
smallest error regardless of which norm is used.

We can also test the estimation performance of each method
when the warping functions are more drastic. Such functions
can be simulated by letting ai in Equation (8) be equally spaced
between −4 and 4. These warping functions are shown in
Figure 4C. In this 2nd simulation, the performance decreases
in all methods (shown in Figure 4D and Table 2). However, the
proposed method still has the lowest error by using each of the
three norms.

3.2. Simulation 2: Poisson Process With a
Non-negative Intensity Function
In this second example, we illustrate the estimation method for
non-negative intensity functions in section 2.3. The underlying
intensity function is defined on [0, 1] and given in the following
form:

λ(t) =
{

−16000|t − 0.5| + 4000 t ∈ [0.25, 0.75]
0 otherwise

This intensity, shown in Figure 5A, has a triangular shape with
peak at 0.5 and two flat sub-regions, [0, 0.25] and [0.75, 1].

We then generate 11 warping functions {γi}11i=1 in the
following two steps: At first, we define γ̃i ∈ Ŵ on [0, 1] as:

γ̃i(t) =
sign(2t − 1)|2t − 1|ei + 1

2
(9)

where

ei =







1

2− 0.2(i− 1)
i = 1, . . . , 6

0.2(i− 6)+ 1 i = 7, . . . , 11.

Then, each γi(t) is defined by linearizing γ̃i(t) at the value points
t = [0, 0.25, 0.5, 0.75, 1]. These warping functions are shown in
Figure 5B. The warped intensity functions, λi(t) = λ(γi(t))γ̇ (t),
are shown in the top panel of Figure 5C. We then simulate 11
independent Poisson processes using these 11 intensity functions,
respectively, and the results are shown in Figure 5D. We can
see that these realizations clearly display the warped intensity
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FIGURE 3 | Simulation of Poisson process with compositional noise. (A) Intensity function of a Poisson process (top panel) and 20 independent realizations (bottom

panel). (B) 20 time warping functions. (C) 20 observed processes, which are warped version of the original 20 realizations.

FIGURE 4 | Intensity estimation. (A) Top panel: True warped density functions. Bottom panel: estimated individual density functions using warped processes in

Figure 3C. (B) True and estimated intensity functions using four methods: proposed, naive, Fisher-Rao, and Wasserstein. (C) More drastic warping functions in the

2nd Simulation. (D) Same as (B) except for the 2nd simulation.
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functions along the time axis. Given these noisy Poisson process
observations, we aim to reconstruct the underlying intensity
function λ(t).

We first estimate the warped intensity functions using
modified kernel method on the 11 observed realizations. The
result is shown in the lower panel of Figure 5C. Comparing with
the true intensities in the upper panel, we can see the kernel
method provides a reasonable estimation. In spite of the phase
shift along the time axis, the kernel method estimates the flat
subregions in the underlying intensity appropriately.

Once the individual intensities are estimated, we then
compute their Karcher mean to get the the warping functions

TABLE 2 | Estimation errors for each method in two simulated datasets.

Dataset Norm Proposed Naive Fisher-Rao Wasserstein

Simulation 1

L
1 43 122 84 54

L
2 49 138 106 60

L
∞ 88 232 243 113

Simulation 2

L
1 116 132 129 153

L
2 130 150 169 171

L
∞ 229 272 381 303

shown in Figure 5E. These warping functions are then used to
estimate the underlying intensity function for the process and the
result is shown in Figure 5F. Comparing the result with the true
intensity function, we find that the proposed method provides a
very accurate reconstruction.

3.3. Application in Spike Train Data
In this section the proposed intensity estimation method
will be applied to a benchmark spike train dataset. This
dataset was first used in a metric-based analysis of spike
trains [14], and was also used as a common data set
in a workshop on function registration, CTW: Statistics
of Time Warpings and Phase Variations in Mathematical
Bioscience Institute in 2012. It is publicly available from
http://mbi.osu.edu/2012/stwdescription.html. In brief, the spiking
activity of one neuron in primary motor cortex was recorded
in a juvenile female macaque monkey. In the experimental
setting, a subject monkey was trained to perform a closed
Squared-Path (SP) task by moving a cursor to targets via
contralateral arm movements in the horizontal plane. Basically,
the targets in the SP task are all fixed at the four corners
of a square and the movement is stereotyped. In each trial
the subject reached a sequence of 5 targets which were the
four corners of the square with the first and last targets

FIGURE 5 | Non-negative intensity estimation. (A) True intensity function. (B) 11 warping functions. (C) (top panel) True warped intensity functions and (bottom panel)

estimated intensities with modified kernel method. (D) 11 simulated processes with respect to the warped intensities. (E) Estimated warping functions. (F) Estimated

(blue) and true (red) intensity functions.
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FIGURE 6 | 30 spike trains in each of the four movement paths.

overlapping. Each sequence of 5 targets defined a path, and
there were four different paths in the SP task (depending
on the starting point). In this experiment, 60 trials for each
path were recorded, and the total number of trials was
240.

To fix a standardized time interval for all data, the spiking
activity in each trial is normalized to 5 s. Thirty spike trains
in each path are shown in Figure 6 where temporal variation
across the trains can be clearly observed. For the purpose of
intensity estimation, a truncated Gaussian kernel (width = 41.67
ms) is adopted to estimate the underlying density of each of the
point process spike trains. From these data, we observe that the
densities have a similar pattern within each class; for example,
they have similar number of peaks and the locations of these
peaks are only slightly different. Such difference can be treated
as compositional noise within each path. We also note that the
peak locations across different paths are significantly different.

For the 60 trials in each path, the first 30 of them are chosen as
the training data and the last 30 as the test data. The proposed
intensity estimation method is tested here to decode neural
signals with respect to different movement paths. Basically, we
classify each smoothed test trial using the smallest value of the
distances to the four Karcher means in four movement paths in
the training set.

The underlying intensity function for each path is calculated
using the proposed algorithm, and the result is shown in
Figure 7. Comparing with the original spike trains, all of the
mean spike trains appropriately represent the firing patterns
in the corresponding movement. For example, the spiking
frequency is relatively higher when the hand moves upward,
which is apparent in all four means. For the 120 test
trains, each train is labeled by the shortest distance over the
distances to the four means in the training set. We only

FIGURE 7 | Estimated intensity function in each path.

need to compute 120 × 4 = 480 distances. It is found
that the classification accuracy using the proposed estimation
method is 82.5%(99/120) whereas the classification accuracies
using the naive cross-sectional method and the Fisher-Rao
registration method are 77.5%(93/120) and 55.0%(66/120),
respectively. This result shows the proposed method can better
differentiate neural signals with respect to different movement
behaviors.

4. DISCUSSION

Intensity estimation has been a classical problem in Poisson
process methods. The problem is significantly challenging if
the observed data are corrupted with compositional noise,
i.e., there is time warping noise in each realization. In the
paper, we have proposed a novel alignment-based algorithm
for positive intensity estimation. The method is based on a
key fact that the intensity function is area-preserved with
respect to compositional noise. Such a property implies that
the time warping is only encoded in the normalized intensity,
or density, function. Based on this finding, we decompose
the estimation of intensity by the product of estimated total
intensity and estimated density. Our investigation on asymptotics
shows that the proposed estimation algorithm provides a
consistent estimator for the underlying density. We further
extend the method to all non-negative intensity functions, and
provide simulation examples to illustrate the success of the
estimation algorithms.

While results from this method show promising
improvements over previous methods, it is important to
note that the method is dependent upon the kernel density
estimates of the observed processes. In general, kernel density
estimates are highly dependent upon the chosen bandwidth h
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[38, 39]. In this paper, we have used a simple plug-in method
to determine an appropriate bandwidth. In future work, we will
consider the development of an algorithm that can automatically
choose the optimal bandwidth for the modified kernel density
estimator. Additionally, future work will examine the asymptotic
variability of this estimator and an extension to general Cox
processes for conditional intensity estimation.
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