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A B S T R A C T   

Background: The temporal precision in neural spike train data is critically important for understanding functional 
mechanism in the nervous systems. However, the timing variability of spiking activity can be highly nonlinear in 
practical observations due to behavioral variability or unobserved/unobservable cognitive states. 
New method: In this study, we propose to adopt a powerful nonlinear method, referred to as the Fisher-Rao 
Registration (FRR), to remove such nonlinear phase variability in discrete neuronal spike trains. We also 
develop a smoothing procedure on the discrete spike train data in order to use the FRR framework. 
Comparison with existing methods: We systematically compare the FRR with the state-of-the-art linear and 
nonlinear methods in terms of model efficiency and effectiveness. 
Results: We show that the FRR has superior performance and the advantages are well illustrated with simulation 
and real experimental data. 
Conclusions: It is found the FRR framework provides more appropriate alignment performance to understand the 
temporal variability in neuronal spike trains.   

1. Introduction 

The temporal precision issue in neural spike train data has become 
one critical topic over the past few decades. Investigators started to 
realize the impact of temporal phase variability in spike data in both 
biological experiments (London et al., 2010; Bruno, 2011) and theory 
derivations (Brette, 2015; Denève and Machens, 2016). Various studies 
have shown the importance of the temporal precision in the analysis of 
the spike trains (Butts et al., 2007; Bair and Koch, 1996; Reich et al., 
1997). However, very few methodologies have been developed to 
effectively solve this problem. The alignment on spike train data is 
challenging because the observations are discrete point processes, where 
the traditional methods for continuous signals such as EEG and fMRI 
cannot be directly used. In addition, multiple units are recorded simul-
taneously in various experiments and a common phase variability is often 
needed. Therefore, a desirable method should be able to identify the 
underlying alignment structure which represents temporal variation for 
all units. 

The simplest and most commonly used method to handle the tem-
poral precision problem is to record one or more time markers 

simultaneously during the experiment. A time marker is usually a special 
time point that represents a meaningful event, such as the time of 
stimulus or the time of subject’s reaction. With time markers, re-
searchers can align the spike train data accordingly through a shifting 
model or a piecewise linear model. In other words, if there is one time 
marker, then the alignment is simply a time shift, i.e., we add a constant 
time to each trial so that the transformed time markers have the same 
value in all trials. If there are multiple time markers, then the spike time 
between two time markers will be linearly transformed to make the time 
markers in every trial be the same. 

This way of alignment is easy to apply and efficient, but it has three 
drawbacks. Firstly, the selection of time markers can be tricky. One 
needs to know in advance which events will be highly related to the 
patterns in the signal in order to select an effective time marker, which is 
often unknown in an exploratory investigation. Randomly choosing one 
event to be the time marker may result in large errors. For example, for 
olfactory coding, alignment based on stimulus time will cause the result 
to be unreliable (Cury and Uchida, 2010; Shusterman et al., 2011, 
2018). Secondly, the relation between the time marker and the patterns 
in the signal is unknown. A shift or linear transformation to align the 
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time marker may not represent the true relation and may not be able to 
uncover the hidden information. Thirdly, because the time marker is a 
part of the observations in the experiment, the recordings may contain 
random errors or systematic errors, which will affect the alignment 
performance. Therefore, compared to the alignment based on time 
markers, an unsupervised alignment method that depends on the spike 
train data only will be more desirable. Because time marker is not 
required in the method, it will not suffer these three issues. 

Motivated by the registration on discrete events, the Dynamic Time 
Warping (DTW) method (Berndt and Clifford, 1994) has been adopted to 
align spike train data. Chi et al. (2007)) combined DTW and linear 
convolution to identify spike patterns and Cao et al. (2016)) proposed a 
spike classification method based on DTW. DTW is an unsupervised, 
algorithm-based method to align sequences. It has the advantage of 
handling nonlinear warping relations, but suffers from nonrobust and 
inconsistent framework (see detailed discussions in Zhao et al. (2020))). 
Recently, Williams et al. (2020)) proposed a reconstruction-error based 
method for temporal precision problems. The method builds an unsu-
pervised model that contains a template matrix and a warping matrix. 
The model assumes that the warping function is linear or piecewise 
linear and the training of the model is a minimization of the recon-
struction error, i.e., the difference between the original data and the 
warped template. We will call this method “piecewise linear model” in 
this paper. The piecewise linear model has proper performance ac-
cording to Williams et al. (2020)) that it can successfully uncover hidden 
patterns in the experimental data. However, the warping function can 
change the time domain, which may make the aligned spike time out of 
the observed time interval. In addition, as the warping is restricted to be 
piecewise linear, its ability to handle drastic nonlinear relation is weak. 

To address the weakness of the current unsupervised methods, we 
propose a new framework by using the Fisher-Rao Registration (FRR) 
method (Srivastava et al., 2011). FRR conducts the alignment by esti-
mating a time warping function at each step, similar to that in the 
piecewise linear model. However, FRR has no restriction on the shape of 
the time warping function and it focuses on nonlinear time warping in a 
fixed time interval (WLOG, we use [0,1] in this paper). In addition, FRR 
is based on the Fisher-Rao distance, which is a proper metric for shapes 
(Srivastava and Klassen, 2016). This characteristic provides FRR many 
good mathematical properties such as robustness and efficiency, and can 
naturally lead to more in-depth analysis such as principal component 
analysis. In this paper, we will explore this method to align discrete 
spike trains and identify and remove temporal variability in the given 
data. 

The rest of this paper is organized as follows. In section 2, we will 
firstly review the FRR method. Then the framework for spike train 
alignment based on FRR method will be described in detail. We will then 
provide a thorough comparison between the proposed method and 
commonly used ones. In section 3, we will apply the proposed method 
on one simulation and two real spike train datasets to evaluate its per-
formance. Finally in section 4, we will summarize our study and discuss 
the future plan on the FRR alignment method. 

2. Methods 

In this section, we will at first review the FRR method, and then 
describe how it can be adapted to conduct alignment on the discrete 
spike train data. 

2.1. Review of the FRR method 

We assume that the input functions are in the space F n = {f : [0,
1]→ℝn

|f is absolutely continuous}, n ∈ N. The Fisher-Rao Registration 
(Srivastava et al., 2011) is a nonparametric, unsupervised method to 
align two multi-dimensional functions f ,g ∈ F n. The alignment is done 

by searching for the optimal time warping in the set Γ = {γ : [0,1]→[0,1]
|γ(0) = 0, γ(1) = 1, γ′(t) > 0}. That is, the optimal warping from f to g 
minimizes the Fisher-Rao distance between g and the warped f: 

γ̂ = argmin
γ∈Γ

dFR(f ◦γ, g) (1)  

where dFR represents the Fisher-Rao distance and ∘ represents function 
composition. 

To solve the optimization problem in Eq. (1), we introduce the 
squared root velocity function (SRVF) to simplify the Fisher-Rao dis-
tance. The definition of SRVF is given as: 

Definition 1. For any function f ∈ F n, its squared root velocity 
function is defined as: 

qf (t) =
{

f ′(t)
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖f ′(t)‖
√

f ′(t) ∕= 0,
0 f ′(t) = 0

}

where ‖ ⋅ ‖ is the conventional l2 Euclidean norm for vectors in Rn. 
From this definition, we know that the SRVF of an element in F n will 
also be a function from [0,1] to Rn. There are some properties about the 
SRVF which are useful in our problem: 

Property 1. The Fisher-Rao distance between any two functions f , g ∈

F n can be transformed to the L2 distance between their SRVFs qf and qg 
as: 

dFR(f , g) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
‖ qfi − qgi ‖

2
2

√

= ‖
2
2 ‖ qf − qg‖

2
2 ‖

where qf = (qf1 ,⋯ ,qfn ),qg = (qg1 ,⋯ ,qgn ), ‖ ⋅ ‖2 is a vector of classical L2 
norms for corresponding components in a function in F n. ‖ ⋅ ‖ is the l2 
Euclidean norm for vectors. Property 2. For any function f ∈ F n 
and time warping function γ ∈ Γ, the SRVF of f∘γ is given as follows: 

qf ◦γ(⋅) = (qf
◦γ)(⋅)

̅̅̅̅̅̅̅̅̅
γ′(⋅)

√
=

̅̅̅̅̅̅̅̅̅
γ′(⋅)

√

⎡

⎢
⎢
⎣

qf1 [γ(⋅)]
qf2 [γ(⋅)]

⋮
qfn [γ(⋅)]

⎤

⎥
⎥
⎦

where qf = (qf1 ,⋯ , qfn ) is the SRVF of f. According to Property 2, we 
can see that ‖ qf◦γ‖

2
2 =

∫
q2

f [γ(t)]γ
′(t)dt =

∫
q2

f (u)du = ‖ qf‖
2
2 . 

Hence, time warping on functions will not change the L2 norm of their 
SRVFs. By using the SRVF, the optimization problem for FRR in Equation 
1 can be simplified to: 

γ̂ = argmin
γ∈Γ

dFR(f ◦γ, g) = argmin
γ∈Γ

‖‖(qf
◦γ)

̅̅̅̅
γ′

√
− qg‖2 ‖ (2)  

Then the solution of Eq. (2) can be computed efficiently through a dy-
namic programming method (Srivastava et al., 2011). In this way, we 
can obtain the aligned functions f◦ γ̂ and g, together with the optimal 
alignment γ̂. 

One reason to adopt the Fisher-Rao distance is that the same warping 
on the input will not change the Fisher-Rao distance, i.e. dFR(f∘γ, g∘γ) 
= dFR(f, g). SRVF functions also have the property that 

‖ qf ◦γ − qg◦γ‖2 =‖ (qf
◦γ)

̅̅̅̅
γ′

√
− (qg

◦γ)
̅̅̅̅
γ′

√
‖2 =‖ qf − qg‖2  

Hence, all time warping functions are isometries to both the original 
function space and the SRVF space. If each component of the original 
function is limited to be within the space of probability density func-
tions: F (p)

n = {f : [0,1]→ℝn⃒⃒f = (f1,f2,⋯ ,fn)′ that ∀i = 1,2,⋯ ,n, fi ≥ 0,
∫

fi(t)dt = 1}, then the time warping operation will be slightly modified 
to keep the warping within the same space F (p)

n . This is clearly given in 
the following remark. 
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Remark 1. If the function for alignment is within the density function 
space f ∈ F (p)

n , we will consider the warping on f to be (f ; γ) = (f◦γ)γ′

and the SRVF of f to be qf =
̅̅̅
f

√
. The properties about SRVF will still 

hold in this case. 

We can see that under Remark 1, the warped function (f; γ) is still 
within F (p)

n and q(f; γ) is still (qf
◦γ)

̅̅̅̅
γ′

√
, so the SRVF space with L2 dis-

tance is still isometry to the original function space with Fisher-Rao 
distance. 

We point out that based on the pairwise alignment between two 
functions, the FRR method can be used to align a group of functions by 
matching every function to a target function. This target function can be 
set by the average of all functions by taking into account both the 
amplitude and phase. The detailed procedure is given in (Srivastava 
et al., 2011). 

2.2. FRR-based spike train data alignment framework 

2.2.1. Overall framework 
The overall process of the alignment on spike train data is illustrated 

in Fig. 1. The panel in the left side represents the potential events before 
we observe the spike data, and the right side indicates the FRR-based 
alignment process. 

For the potential events, we assume that there is a potentially true 
firing rate pattern for every neuron, and the experiment conditions such 
as stimulus are repeated in different trials. Each trial in the experiment 
corresponds to a noised, time-warped version of the true firing rate 
curve. Since all the neurons are observed at the same time in a trial, the 
time warping function for each neuron is assumed to be the same. Based 
on the warped firing rate functions, spike train data are generated 
accordingly and observed during the data collection process. 

For the spike trains alignment, the first step is to transform the 
observed spike train data to functions, either to estimated firing rate 
functions or to estimated probability density functions of the spike time. 
Then after computing the SRVFs of the estimated functions, we can 
apply FRR to obtain the estimated time warping functions together with 
the template SRVF. In the end, adjusting the spike time data through the 
estimated time warping functions will give us the aligned spike train 

data. 
According to Fig. 1, three assumptions are required for the FRR- 

based spike train alignment:  

1. All the spike train observations are repeated trials under the same 
experiment settings.  

2. All the neurons are observed simultaneously in every trial, i.e. all the 
signals are recorded at the same time.  

3. All the trials are independent realizations with no warping noise on 
average. 

The first and third assumptions jointly indicate that it is reasonable to 
assume every observation comes from a time-warped true firing rate. 
The second assumption suggests that all neurons in a trial share the same 
time warping function. According to the third assumption, we are able to 
assume the mean of all the time warping functions is the identity 
function γid(t) = t for t ∈ [0,1]. 

2.2.2. Spike-to-function transformation  

• Type of functional data 
To transform spike train data to functional data, we propose two 

choices for the type of functions in this paper. The first choice is the 
estimated firing rate for the trial based on the spike train data. It can 
be naturally assumed that the firing rate function is absolutely 
continuous and nonnegative, so the functions for alignment can be 
seen as from the space F n introduced in section 2.1. In this way, the 
time warping is applied through f∘γ and SRVF is computed by qf =

f ′∕
̅̅̅̅̅̅̅̅̅̅̅
‖ f ′ ‖

√
. The second choice is the estimated probability density 

function for the trial based on the spike time collections. In this case, 
the functions for alignment can be seen as from the space F (p)

n 
introduced in section 2.1. according to Remark 1, we should apply 
time warping through (f◦γ)γ′ and compute SRVF by qf =

̅̅̅
f

√
. 

Although these two approaches are clearly different, their esti-
mation processes are similar. Denote F(smooth)

j,k (t) as the estimated 

firing rate value and P(smooth)
j,k (t) as the estimated density function 

Fig. 1. An illustration of the overall process for spike train alignment.  
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value for neuron j, trial k at time t. Then F(smooth)
j,k (t) represents the 

count of spikes within a small neighborhood of t and P(smooth)
j,k (t)

represents the probability of having a spike within a small neigh-
borhood of t. Empirically, probability is estimated by frequency, so 
P(smooth)

j,k (t) can be seen as the frequency of spikes within the neigh-

borhood of t; that is, P(smooth)
j,k (t) = F(smooth)

j,k (t)∕mj,k, where mj,k is the 
total number of spikes in trial k for neuron j. From this we can see 
that the difference between the two estimation results is simply a 
constant multiplication. Therefore, in the following section, we will 
only introduce the methods for estimating the firing rate F(smooth)

j,k . If 
the estimated density function is needed, one can firstly estimate the 
firing rate, and then divide it by the total number of spikes in the trial 
to obtain P(smooth)

j,k . 
Both of these two choices have their advantages: Estimating the 

firing rate follows the nature of the data generating process in our 
overall framework. As shown in Fig. 1 left half, we assume the firing 
rate is what is warped in a trial, not the density function. In addition, 
if we estimate the firing rate, we are able to get the estimated true 
firing rate (the template), which is not feasible if we estimate the 
density function. On the other hand, the SRVF will not be based on 
derivatives in the estimation of density functions. In the case that the 
estimated firing rate is extremely non-smooth, the density based 
alignment may perform better as the error in the SRVF will be much 
smaller.  

• Estimation approaches 
In this paper, we propose two estimation methods to transform the 

spike train data to functional data. The first method is binning. We 
firstly set a sequence of consecutive time bins. Then raw firing rate 
can be calculated by counting the number of spikes in each bin. 
Specifically, suppose the time bin boundaries are: t1, t2, ⋯ , tN, i.e. the 
time bins are: [t1, t2), [t2, t3), ⋯ , [tN− 2, tN− 1), [tN− 1, tN], and the spike 
time sequence is s1, s2,⋯ , smj,k for neuron j and trial k, then the raw 
firing rate for bin i will be: 

F(raw)
j,k (ti) = F(raw)

i,j,k =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
ti+1 − ti

∑mj,k

r=1
I[ti ,ti+1)(sr) i = 1, 2,⋯,N − 2,

1
tN − tN− 1

∑mj,k

r=1
I[tN− 1 ,tN ](sr) i = N − 1,N

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

For easy computation, the raw firing rate F(raw)

i,j,k at time bin [ti, ti+1] is 

assigned as F(raw)

j,k (ti), the value of function F(raw)

j,k at the left time bin 

boundary ti, for i = 1, 2, ⋯ , N − 1, and we set F(raw)

j,k (tN) to be the 

same as F(raw)

j,k (tN− 1). The raw firing rate from binning will then be 
smoothed to compute the SRVF for FRR alignment. In this paper, we 
tried two smoothing methods: Gaussian kernel smoothing (Wand and 
Jones, 1994) and cubic smoothing spline (De Boor and De Boor, 
1978). The Gaussian kernel smoothing method is similar to a moving 
average approach that for a time point ti and a pre-determined 

window size d, the smoothed function value F̃
(smooth)
j,k (ti) will be a 

weighted average of the raw function values F(raw)

j,k (tmax{1,i− d}), 

F(raw)

j,k (tmax{1,i− d}+1), ⋯ , F(raw)

j,k (tmin{N,i+d}), where the weights are 
determined by a Gaussian density, i.e.: 

F̃
(smooth)
j,k (ti) =

1
∑d

r=− d wr

∑min{N− i,d}

r=max{− i+1,− d}

wr F(raw)
j,k (ti+r)

where wr = exp{ − 1
2σ2

b
(ti+r − ti)2

} is the Gaussian density weight with 

σb to be the standard deviation hyper-parameter. The cubic 
smoothing spline is a nonparametric regression method with a pen-

alty on the roughness. It will estimate a function F̃
(smooth)
j,k based on 

cubic splines to optimize the objective function: 

(1 − λ)
∑N

i=1
[F(raw)

j,k (ti) − F̃
(smooth)
j,k (ti)]

2
+ λ

∫

[F̃
(smooth)′′
j,k (t)]

2
dt  

where λ ∈ [0,1] is a hyper-parameter that controls the smoothness. 

When λ = 0, F̃
(smooth)
j,k will pass all the points (ti, F(raw)

j,k (ti)) for i = 1, 2, 

⋯ , N. Increasing λ will make F̃
(smooth)
j,k smoother and when λ = 1, 

F̃
(smooth)
j,k will be the least square regression line. To be consistent with 

the Gaussian kernel smoothing output, function values at t1, t2, ⋯ , tN 

will be recorded to save ̃F
(smooth)
j,k . As cubic spline estimation is second 

order differentiable, F̃
(smooth)
j,k has continuous derivative, which can 

guarantee a smooth SRVF, so we will prefer to use this method for 
most cases. 

The last step is a linear transformation on the function values. For 
neuron j trial k, we firstly make the function nonnegative: 

̃̃F
(smooth)

j,k =

⎧
⎪⎨

⎪⎩

F̃
(smooth)
j,k if  ∀u∈ [t1, tN ], F̃

(smooth)
j,k (u)≥ 0,

F̃
(smooth)
j,k − min

u∈[t1 ,tN ]
F̃
(smooth)
j,k (u) if  ∃u∈ [t1, tN ], F̃

(smooth)
j,k (u)< 0

⎫
⎪⎬

⎪⎭

Then we make the integral to be consistent with the number of spikes 
in the trial, and in this way we can obtain the estimated firing rate: 

F(smooth)
j,k =

mj,k
̃̃F
(smooth)

j,k

∫ tN
t1

̃̃F
(smooth)

j,k (u)du  

where mj,k is the number of spikes for neuron j in trial k and [t1, tN] is 
the observed time interval, which is also the boundary of the first and 
last time bin. The second method for spike-to-function trans-
formation is kernel density estimation Silverman (1986)). This 
approach is designed for density curve estimation. As discussed in 
the previous section, the estimated firing rate is just a constant 
multiplication of the estimated density function, so the kernel den-
sity approach works for both choices. In this paper, we adopt the 
Gaussian kernel estimator and the estimated firing rate can be 
computed by 

F(smooth)
j,k (t) =

∑mj,k

i=1

exp[− 1
2σ2(t − si)

2
]

∫ tN
t1

exp[− 1
2σ2(u − si)

2
]du  

where s1, s2,⋯ , smj,k is the spike time sequence for neuron j and trial 
k, and [t1, tN] is the observed time interval, which is also the 
boundary of the first and last time bin. σ > 0 is a hyper-parameter 
which controls the interaction between spike time. A close-to-zero 
σ will result in a spike-like F(smooth)

j,k and a large σ will make F(smooth)
j,k 

smooth. Similar to the binning method, we can record the function 
value at t1, t2, ⋯ , tN to represent F(smooth)

j,k . 
Both the binning method and the kernel density estimation 

method will require a large enough true firing rate, i.e. large enough 
total number of spikes in a trial. If the true firing rate function values 
are small over the observed time interval, few spikes will be observed 
and we can hardly estimate the desired function.  

• Performance measurement 
To measure the performance of the alignment, the most common 

way is to make raster plots. If the original data do not have clear 
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pattern in the plots but the aligned data do, it means some hidden 
information is uncovered and the alignment is likely to work prop-
erly. In the case that there are time markers recorded with the data, 
we can consider them in the aligned data. Because time markers are 
not used at all in the alignment framework, if they are clearly 
concentrated in the aligned data, then it reveals that the alignment 
effect is appropriate. 

To quantify the alignment performance, one can use the difference 
between the true and estimated time warping function, or the dif-
ference between the true and estimated firing rate function. For 
example, the root mean square errors (RMSE) with respect to the L2 
distance for functions on warping functions and firing rates respec-
tively are given as 

RMSE(γ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
K

∑K

k=1

∫

[γk(t) − γ̂k(t)]
2dt

√
√
√
√ (3)  

RMSE(f ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

j=1

∫

[fj(t) − f̂ j(t)]
2dt

√
√
√
√ (4)  

where K is the total number of trials and M is the total number of 
observed neurons. γk and fj represent the time warping function for 
trial k and the true firing rate for neuron j respectively, while ̂γk and ̂f j 

represent the estimated time warping function for trial k and the 
estimated true firing rate for neuron j respectively. A smaller value of 
RMSE(γ) or RMSE(f) indicates a better alignment performance. 

Another way is to use the reconstruction R-square, proposed by 
Williams et al. (2020)). Basically, one can use the inverse of the 
estimated time warping function on the estimated true firing rate, so 
that a fitted warped firing rate can be computed: 

F̂j,k = f̂ j
◦
γ̂− 1

k  

where f̂ j is the estimated true firing rate for neuron j and γ̂k is the 
estimated warping function for trial k. Then we can compare F̂j,k to 

the raw firing rate F(raw)

j,k , or to the estimated firing rate F(smooth)
j,k and 

compute the R-square value: 

R2
B = 1 −

∑N
i=1

∑M
j=1

∑K
k=1[F

(raw)
j,k (ti) − F̂j,k(ti)]

2

∑n
i=1

∑M
j=1

∑K
k=1[F

(raw)
j,k (ti) − F(raw)

j ]
2 (5)  

R2
S = 1 −

∑N
i=1

∑M
j=1

∑K
k=1[F

(smooth)
j,k (ti) − F̂j,k(ti)]

2

∑n
i=1

∑M
j=1

∑K
k=1[F

(smooth)
j,k (ti) − F(smooth)

j ]
2 (6)  

where 

F(raw)
j =

1
NK

∑N

i=1

∑K

k=1
F(raw)

j,k (ti)

and 

F(smooth)
j =

1
NK

∑N

i=1

∑K

k=1
F(smooth)

j,k (ti).

For the estimated density function, we can compute the R-square 
based on the fitted density: 

P̂j,k = (P̂j
◦
[γ̂− 1

k ])[γ̂− 1
k ]

′

where P̂j is the estimated template density function for neuron j and 
γ̂k is the estimated warping function for trial k. The associated R- 
square on density is defined as: 

R2
P = 1 −

∑N
i=1

∑M
j=1

∑K
k=1[P

(smooth)
j,k (ti) − P̂j,k(ti)]

2

∑n
i=1

∑M
j=1

∑K
k=1[P

(smooth)
j,k (ti) − P(smooth)

j ]
2 (7)  

where P(smooth)
j = 1

NK
∑N

i=1
∑K

k=1P(smooth)
j,k (ti). A large R-square value 

suggests that the alignment result can well represent the original 
data, but the ability to recover the original data does not mean that 
the alignment is meaningful or reasonable. Therefore, the recon-
struction R-square value is not as good as the RMSE. However, RMSE 
will not be available when we do not have the true time warping 
function and true firing rate. In this case we can only use R-square to 
quantify the alignment performance. 

Based on the RMSE or R-square, we propose a cross-validation 
method to search for optimal hyper-parameters. The detailed pro-
cedure is given in Algorithm 1 as follows. In summary, the method 
partitions observed dataset into two parts: a training part and a 
validation part, with respect to trials and neurons. In other words, 
the entire trials are separated into training trials and validation trials, 
and the entire neurons are separated into training neurons and 
validation neurons. The partition for the trials and the neurons are 
independent, so one can set different number of folds for the trials 
and the neurons. As illustrated in Fig. 2, the FRR alignment will be 
applied on the training trials, entire neurons to estimate the tem-
plate. Then it will be applied again on the entire trials, training 
neurons to estimate the time warping functions. In this way, the 
estimated templates cover all the neurons, and the estimated time 
warping functions cover all the trials. Using the estimated templates 
for the validation neurons and the estimated time warping functions 
for the validation trials, we can get the fitted firing rate functions 
(validation trials and neurons only). By calculation on all folds, we 
can obtain the estimated template, estimated time warping function 
and fitted firing rate function for every trial and neuron, and the 
RMSE or R-square can be computed accordingly. Therefore, for each 
selected hyper-parameter, we are able to compute the corresponding 
cross-validation performance value (either RMSE or R-square), and 
finally a grid search can be done to select the optimal one. 

Fig. 2. Graphical illustration of the cross-validation for optimal hyper- 
parameter search. 
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Algorithm 1. Cross-Validation Grid Search (Hyper-parameter 
Tuning).  

Input: 
- The spike data S = {Sij} i = 1...K

j = 1...M 
with K trials and M neurons.  

- The number of folds on trials Ct and on neurons Cn. 
- The estimation method from spike to firing rate / density function M(s; θ) with s to be 

the input spike data and θ to be the hyper-parameter. 
- The measure of performance P(s, Ĥ, γ̂, f̂) with s to be the input spike data and Ĥ, γ̂, f̂ to 

be the estimated template, estimated time warping and fitted firing rate / density for 
s.  

- The set of hyper-parameter values to search {h1, h2, ⋯ , hr}. 
Iteration: 
(1) Random shuffle set {1. . . K} and partition it into Ct parts: T1...TCt , i.e. ∀ i, j = 1. . . 

Ct and i ‡ j, Ti ∩ Tj = ∅; ∪Ct
i=1Ti = {1...K}.  

(2) Random shuffle set {1. . . M} and partition it into Cn parts: N1...NCn , i.e. ∀ i, j = 1. . . 
Cn and i ‡ j, Ni ∩ Nj = ∅; ∪Cn

i=1Ni = {1...M}.  
for each α = 1, 2. . . r do 
for each β = 1, 2. . . Ct do 
for each γ = 1, 2. . . Cn do 
(3.1) Estimate the firing rate / density functions from the spikes: {F(α)

ij } i = 1...K
j = 1...M 

=

M(S; hα).  
(3.2) Get the trial indices for train: Tc

β = ∪
Ct

i = 1
i ∕= β

Ti and valid: Tβ.  

(3.3) Get the neuron indices for train: Nc
γ = ∪

Cn

i = 1
i ∕= γ

Ni and valid: Nγ.  

(3.4) Apply FRR on training trials and entire neurons, i.e. {F(α)
ij } i ∈ Tc

β
j = 1...M

, to obtain 

the estimated template {Ĥ(α)
j }j=1...M.  

(3.5) Apply FRR on entire trials and training neurons, i.e. {F(α)
ij } i = 1...K

j ∈ Nc
γ

, to obtain 

the estimated time warping {γ̂(α)i }i=1...K.  

(3.6) Compute the fitted firing rate / density {f̂
(α)
ij } i ∈ Tβ

j ∈ Nγ 

by ̂f
(α)
ij = Ĥ(α)

j ◦(γ̂(α)i )
− 1

, for i 

∈ Tβ, j ∈ Nγ.  
(3.7) Record the estimated template, time warping and fitted function for validation: 

{Ĥ(α)
j }j∈Nγ

, {γ̂(α)i }i∈Tβ 
and {f̂

(α)
ij } i ∈ Tβ

j ∈ Nγ  

end for 
end for 
(4) After the iteration, we have the estimated template, time warping and fitted 

function for all trials, all neurons: {Ĥ(α)
j }j=1...M, {γ̂(α)i }i=1...K and {f̂

(α)
ij } i = 1...K

j = 1...M
, so 

the measure of performance for hα can be computed as: p̂α = P(S,{Ĥ(α)
j }j=1...M,

{γ̂(α)i }i=1...K ,{f̂
(α)
ij } i = 1...K

j = 1...M
).  

end for 
Output: 
p̂1 ,⋯ , p̂r are the measurement of performance with respect to the hyper-parameters 

h1, ⋯ , hr. One can choose the hα with the best p̂α.    

2.3. Advantages of the FRR-based spike train alignment 

Various approaches have been proposed to address the alignment 
problem on spike train data. These approaches include a model-free 
method (Ventura, 2004), Dynamic Time Warping (DTW) and its vari-
ants (Keogh and Pazzani, 2001; Cuturi and Blondel, 2017; Lawlor et al., 
2018), scalable latent identification (Duncker and Sahani, 2018), and 
piecewise linear models (Williams et al., 2020). Within these methods, 
two of the most commonly used ones are the DTW and piecewise linear 
models. We point out that although the DTW method can properly 
identify nonlinear time warping in the given neural signals, it suffers 
undesired mathematical properties such as inconsistent sampling points, 
unstable normalization, and pinching effect. A thorough comparison 
between FRR and DTW is already discussed in detail in (Zhao et al., 

2020). In this manuscript, we focus on the comparison between FRR and 
the piecewise linear models (Williams et al., 2020). The FRR alignment 
has the following advantages: .  

1. Allow all types of time warping functions: The piecewise linear 
models assume the warping is either a simple time shift or a piece-
wise linear function. For mild phase variability, such methods can 
provide efficient and accurate representation. However, these 
models may suffer (of robustness and complexity) when more drastic 
time warpings are observed. In contrast, the FRR alignment can be 
given in any nonlinear form and has no restriction on the type of 
warping function. No matter what the true time warping is, the FRR 
alignment can work efficiently and effectively.  

2. Invariant on the time domain: In the piecewise linear models, the 
time warping function cannot be fixed in any time domain. As a 
result, the aligned spikes can be out of the given observed time in-
terval, which makes the result difficult to interpret and may lead to 
information loss. In the FRR method, the time warping functions are 
monotone increasing from [0,1] to [0,1].  

3. Minimal hyper-parameter tuning: In the piecewise linear models, 
one needs to carefully select the hyper-parameters in the model, 
including the number of knots, the regularization strength for both 
the template and the warping, and the number of iterations for 
optimizing the warping function. This may be a highly demanding 
task in practical use. In contrast, in the FRR method, the only hyper- 
parameters are the ones in the smoothing procedure, so there are at 
most two hyper-parameters (when using binning with Gaussian 
kernel smoothing), and the tuning process is straightforward. 

3. Experimental results 

In this section, we will apply the FRR alignment on simulated and 
real experimental datasets to evaluate its performance. Firstly in Section 
3.1, a simulation dataset is used for alignment. The true firing rate 
functions and true time warping functions are known, so we simply 
compare the estimated curves to the true curves by computing RMSE(γ) 

and RMSE(f). Then in Sections 3.2 and 3.3, the method is applied on two 
real datasets. Because there is no ground truth in these real-world 
datasets, RMSE will not be a valid measure and we will focus on the 
behavior of the aligned time markers. 

3.1. Simulation example 

To evaluate the performance of the FRR alignment on spike train 
data, we conduct a simulation study following the structure in Fig. 1, 
where the potential true firing rate and true time warping function for 
every trial are known, so that a real application of the FRR alignment can 
be imitated and at the same time the actual performance can be 
accessed. To better understand the method, we separate the simulated 
data to two parts: a training part for template estimation and a test data 
for time warping estimation based on the output from the training data. 
In total, we simulate 30 trials for training and 10 trials for test. Both 
include 50 observed neurons. The observed time interval for the spike 
and the firing rate is [0,20]. The generated potential true firing rate 
functions and true time warping functions are shown in Fig. 3, including 
50 true firing rate functions, 30 true time warping functions for training 
and 10 true time warping functions for test. The true firing rate function 
is generated by smoothed random walk within 0–10 in function value. 
For the true time warping function, we firstly random generate some 
points within 0 and 1 to be the break points. Then we sort these points 
and connect them by concatenated cubic functions: 

f (x) =
{

y1 + a(x − x1)
3 if  x ≤ (x1 + x2)/2

y2 + a(x − x2)
3 if  x > (x1 + x2)/2  

where (x1, y1) and (x2, y2) are the two points to connect and a = 4(y2 −
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y1)∕(x2 − x1)3. In this way, the resulting curve will be in Γ as defined in 
section 2.1. After composing the firing rate and the time warping, we 
randomly generate spikes on the warped firing rate functions. An 
example of the spike data for the 10th neuron is shown in Fig. 4, con-
taining 30 trials for training and 10 trials for test. 

For the FRR alignment, binning with cubic smoothing spline is 
applied to estimate the firing rate from the spike data. The time bins are 
[0, 0.5), [0.5, 1), ⋯ , [19.5, 20] and the hyper-parameter λ is searched 
through a cross-validation grid search with 4 folds on trials and 5 folds 
on neurons. To imitate the application on real data, we use the recon-
struction R-square in Eqs. (5) and (6) as the measure of performance. 
The resulting learning curve is shown in Fig. 5 (a). As can be seen, the R2

B 
curve is nearly monotonically decreasing, and therefore the value that 
can maximize the R2

S is chosen to be the final hyper-parameter (λ̂ =
0.2436). Based on the FRR alignment, the estimated template and 
estimated time warping functions for the training and the test are shown 

in Fig. 6 (a), (b) and (c) respectively. Compared to Fig. 3, we can see the 
estimated curves in general have similar shape as the true curves. Some 
curve segments become straight in the time warping estimation due to 
information loss during random generation of spikes from firing rate. 
Because the potential true firing rate and true time warping are known, 
we adopt the RMSE in equation 3 and 4 as the measure of performance. 
The resulting values are shown in Table 1 row 1. 

To make a comparison, we have also tried the piecewise linear model 
(Williams et al., 2020) on the same simulation data (the spike data). The 
time bins are chosen to be the same [0, 0.5), [0.5, 1), ⋯ , [19.5, 20] and 
other hyper-parameters are searched by the method provided in the 
given paper. The learning curve is shown in Fig. 5 (b). According to the 
output, we select the best 3 models: piecewise-3, piecewise-4 and 
piecewise-5. The resulting time warping functions are shown in Fig. 7 
and the estimated template functions are shown in Fig. 8. The results are 
not as good as the result from the FRR alignment, especially the time 
warping functions, compared to Fig. 3. The RMSE values are given in 

Fig. 3. The potential true functions in the simulation. (a) The potential true firing rate functions. (b) The true time warping functions for the training part. (c) The 
true time warping functions for the test part. 

Fig. 4. The simulated spike data for the 10th neuron as an example. (a) The 30 training trials. (b) The 10 test trials.  

Fig. 5. The learning curve for hyper-parameter search. (a) The cross-validation grid search in FRR alignment. (b) The hyper-parameter search for piecewise 
linear model. 
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Table 1 row 2 to row 4. It also agrees to the conclusion that the FRR 
alignment provides better results than piecewise linear model. 

In conclusion, based on the simulation outcomes, the proposed FRR 
alignment method can properly estimate the potential true firing rate 
functions and true time warping functions. It can provide reasonable 
alignment results on the spike train data. 

3.2. Rat motor cortex data alignment 

The second dataset is a real experimental recording of motor cortical 
activity and was used in (Williams et al., 2020). The dataset contains 
1266 trials on 30 neurons. The experiment was to train rats to press a 
lever twice and if the time between the pressing is within a target in-
terval, then the rats receive food reward. The time for the two pressing 
was also recorded as time markers. The spike data was preprocessed so 
that the time for the first pressing is consistent across trials at 500 ms 
and the trials are sorted by the second pressing time. The time interval 
for the spike data is [0,2000] ms. For easy computation, we chose the 
neurons whose average number of spikes per trial was larger than 5 to be 
the “main-focus” neurons. Then we included only the trials that had 
more than 1 spike for the main-focus neurons in our study. In this way, 
644 out of 1266 trials were considered in the computation and 15 out of 
30 neurons became the main-focus neurons. 

The plots for the raw data are displayed in Fig. 9 (a). The first 6 rows 
are 6 example neurons, where the blue points represent the first pressing 
and the red points represent the second pressing. The last row is the 
histogram for the two pressing time. Similarly, the blue bars are for the 
first pressing and the red bars are for the second pressing. As the original 
data is aligned by the first pressing, the histogram has only one blue bar. 
The standard deviation (STD) and interquartile range (IQR) for the two 
taps and the distance between the two taps are shown in Table 2 row 1. 
From the plots of the raw data, we can hardly see any pattern. 

A naive way of alignment is to align both the two pressing through a 
manual linear time warping. Because the first pressing time is already 
aligned, the time warping function will be a linear scaling of the time 
after the first pressing, i.e. the time warping function γj for trial j will be: 

γj(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t t ∈ [0,C1),

cj − C1

C2 − C1
(t − C1) + C1 t ∈ [C1,C2),

1 − cj

1 − C2
(t − C2) + cj t ∈ [C2, 1]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

where C1 = (500 − 0)∕2000 = 0.25 and C2 = 0.61775 are the average 
time of the first and second pressing scaled to be within [0,1]. cj is the 
time of the second pressing scaled to be within [0,1] for trial j. Through 
this alignment, we obtained Fig. 9 (b), and some example time warping 
functions are given in Fig. 10 (a). It can be seen that the two pressing 
time is perfectly aligned, but there is still no clear pattern on aligned 
spike trains. 

We then tried the FRR method on the spike data. We used only the 
"main-focus" neurons in the FRR alignment, and when the estimated 
time warping functions for all the trials were obtained, we applied them 
on all the neurons to get the aligned spikes. After comparing the output 
from different settings, we chose the density approach with binning and 
cubic smoothing spline as the final FRR model. The result is shown in 
Fig. 9 (d), where some time warping function examples are given in 
Fig. 10 (c). From the raster plots of the example neurons and the his-
togram, we can see the alignment concentrates the time for tap 2 a lot, 
while making the time for tap 1 a little disperse. In addition, it is clear 
that patterns exist in the spike data. We can observe oscillations in the 
raster plots, especially the second, third and fifth row. These findings are 
consistent with the result of the shifting model in the original paper 
Williams et al. (2020)), as shown in Fig. 9 (c), with some time warping 
functions for illustration shown in Fig. 10 (b). Compared to Fig. 9 (a) and 
(b), the oscillation patterns only exist in the aligned output. This in-
dicates that the alignment based on time markers or simple manual 
linear time warping may not be able to uncover the hidden information 
in the data. The STD and IQR for the two taps and the distance between 
taps are shown in Table 2, where the shifting model output is in row 2 
and the FRR method output is in row 3. In comparison with the raw data, 
the FRR alignment has the distance between taps and the time for tap 2 
more concentrated since its IQR value is apparently much lower (the 
STD value is nearly the same). On the other hand, it can be seen that the 
shifting model and the FRR method have similar STD and IQR for the 
second tap, which implies they have similar effect on concentrating the 
times for tap 2. However, for tap 1 time, the FRR method has much lower 
STD and IQR compared to the shifting model. In terms of the distance 
between taps, as the shifting model will not change the space between 
spikes, it has the same IQR and STD as the raw data; that is, the 
tap1-tap2 distance is not concentrated at all in the shifting model. 
Therefore, we can see that the FRR method is able to find potential 

Fig. 6. The estimated functions through FRR alignment. (a) The estimated template firing rate functions. (b) The estimated time warping functions for the train part. 
(c) The estimated time warping functions for the test part. 

Table 1 
The performance of the alignment methods with respect to the true functions.  

Type of Model RMSE(γ)
(train) RMSE(γ)

(test)
RMSE (f) 

FRR  0.0365  0.0398  2.4566 
Piecewise-3  0.0427  0.0553  2.8807 
Piecewise-4  0.0391  0.0430  2.5526 
Piecewise-5  0.0416  0.0463  2.6647  
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patterns in the data and take into consideration the subject’s major ac-
tions simultaneously, while the piecewise linear model cannot. 

3.3. Monkey decoding data alignment 

The third experimental dataset is macaque monkey neuron decoding 
dataset, first introduced by Wu and Srivastava (2011)). The experiment 
trained monkeys to use right arm moving a cursor on a screen to a target 
location, and during this process, the extracellular spiking activities 
were recorded through implanted electrodes. There are four target lo-
cations on the screen, forming the four vertices of a rectangle. We will 
refer to the target at the top left corner as target 1, the target at the 
bottom left corner as target 2, the target at the bottom right corner as 
target 3 and the target at the top right corner as target 4. Each trial 

begins when the cursor comes to the first target. Then when one target is 
reached, the next one will appear on the next counterclockwise vertex. 
The trial ends when the cursor reaches the last target, which is the same 
as the first target, making the trajectory a closed path (illustrated in  
Fig. 11). In the experiment, 110 neurons were observed over 60 trials. 
The spike time is preprocessed so that all the spikes are within 0–5 s. The 
time that the cursor reaches the target is also recorded and preprocessed, 
so there are five time markers. The first one is at 0 s and last one is at 5 s. 
The remaining three time markers are within 0–5 s 

The raster plots of the raw data are shown in Fig. 12 (a). The first 5 
rows are the raster plots for 5 example neurons. The cyan, red, green and 
blue points represent the times that targets 1, 2, 3 and 4 are reached, 
respectively. The last row is the histogram for the times that targets 2, 3 
and 4 are reached, respectively. Because the recording starts at the time 

Fig. 7. The estimated time warping functions through piecewise linear model. Top row: training trials. Bottom row: test trials. Left column: piecewise-3. Middle 
column: piecewise-4. Right column: piecewise-5. 

Fig. 8. The estimated template functions through piecewise linear model. (a) piecewise-3. (b) piecewise-4. (c) piecewise-5.  
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target 1 is reached and ends at the time target 1 is reached again, it can 
be seen that the cyan time markers are already aligned on the two sides 
in the plots. However, the red, green and blue time markers are 
distributed randomly. The points are mixed, making it difficult to obtain 
information from the raw data. To measure the concentration of the time 
markers, we compute the standard deviation (STD) and interquartile 
range (IQR) of the times that targets 2, 3 and 4 are reached, respectively, 
which are shown in Table 3 row 1. 

To apply the FRR method, we pre-selected the neurons such that only 
the neurons with at least 1 spike in every trial, or the neurons that have 
at least 5 spikes per trial on average, will be used in FRR alignment. In 
total, 76 out of 110 neurons were selected. Then after the time warping 

functions were estimated, we applied them on all the neurons to obtain 
aligned spikes. Different FRR method settings were tried and we finally 
chose the density approach with binning and cubic smoothing spline to 
run the FRR alignment. The output raster plots are shown in Fig. 12 (c) 
and some example time warping functions are shown in Fig. 13 (b). It 
can be seen that the cyan time markers are unchanged, while the red, 
green and blue time markers are much more concentrated in comparison 
with the raw data. The STD and IQR for the middle three time markers 
are shown in Table 3 row 3. We can see a huge drop in the STD and IQR 
values with respect to the raw data, which also supports that the time 
markers become concentrated after the FRR alignment. In addition, 
from the aligned results, we can see that there are some behavioral 
patterns in the data. For Fig. 12 (c) row 2, the spikes are mainly within 
the red and green time markers. Similarly for Fig. 12 (c) row 3, the spikes 
are mainly within the green and blue time markers. In Fig. 12 (c) row 4, 
there is a strong signal corresponding to each of the red, green and blue 
time markers. As the time markers are not aligned in the raw data, these 
patterns cannot be seen clearly. With this information, we will be able to 
know which neuron can tell us more information about the subject’s 
action and thus can work better in decoding. 

For comparison, we also tried the piecewise linear model. The cross- 
validation search of the hyper-parameters, as shown in Fig. 14, informed 
that the number of knots to be 4, the template smoothness penalty to be 

Fig. 9. The motor cortex spike data. Row 1 to row 6: 6 example neurons from the total 30 neurons, where the blue points represent first pressing and the red points 
represent the second pressing for each trial. Row 7: the histogram of the two pressing time where blue bars are for the first pressing and red bars are for the second 
pressing. Column (a): the raw data, aligned by the first pressing. Column (b): the data aligned by the two pressing time through a manual linear time warping. 
Column (c): the data aligned by the shifting model in the original paper (Williams et al., 2020). Column (d): the data aligned by the FRR method. 

Table 2 
The standard deviation (STD) and interquartile range (IQR) of the distance be-
tween taps, tap1 time marker and tap2 time marker with respect to different 
cases.  

Method Tap1-Tap2 Dis Tap1 Tap2  
STD IQR STD IQR STD IQR 

Raw Data  138.05  153.98  0.00  0.00  138.05  153.98 
Shifting Model  138.05  153.98  81.16  90.00  141.40  99.50 
FRR Method  141.29  138.12  62.66  81.78  143.85  99.03  
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0.7057, the warping smoothness penalty to be 0.0016, the number of 
total iterations to be 50 and the number of iterations for warping opti-
mization to be 50 were the optimized setting. The corresponding output 
plots are shown in Fig. 12 (b), and the STD and IQR values for the red, 
green and blue time markers are given in Table 3 row 2. Some time 
warping functions for illustration are given in Fig. 13 (a). As compared 
to the result of the FRR alignment, both methods have the ability to 
concentrate the middle three time markers, where the piecewise linear 

model is better in target 2 (STD 0.18 vs 0.19 and IQR 0.20 vs 0.28) and 
the FRR method is better in target 4 (STD 0.10 vs 0.20 and IQR 0.14 vs 
0.21). However, in the result of the piecewise linear model, the origi-
nally aligned cyan time markers become dispersed. Considering how 
each trial begins and ends, it is difficult to interpret this aligned output. 
This is because many trials will have starting point or ending point 
outside the target time interval after alignment. Therefore, although 
both the FRR method and the piecewise linear model can give compa-
rable alignment results in terms of the times that target 2, 3 and 4 are 
reached, the FRR method can do much better when the alignment on 
target 1 time is considered. 

4. Summary and future work 

The temporal precision in neural spike train data is an important 
topic, whereas it is still under-explored in the field. In this paper, we 
proposed a method for spike train data alignment, based on an existing 
shape data registration framework - the FRR method. In section 2, we 
firstly reviewed how the FRR method works on functions in F n and 
F (p)

n . Then the framework of alignment through FRR method on spike 
train data was illustrated and the method assumptions were given. Fig. 1 
provides a summary for the overall process of the FRR-based alignment. 
After a discussion of the alignment framework, we found that the key to 
the method was to transform the discrete spike time to sampling points 
of function curves, either the estimated firing rate functions or the 
estimated probability density functions. We proposed two approaches: 
binning and kernel density estimation. Binning is to separate the time 
interval into time bins to compute the function values through counting 
and then smooth the obtained values to get the estimated curve. Kernel 
density estimation is to assign a function to each spike and then sum up 
all the functions. A cross-validation method was also provided for hyper- 
parameter tuning. At the end of Section 2, we compared the FRR method 
with commonly used piecewise linear models and showed its three ad-
vantages: (1) allow all types of time warpings, (2) invariant on the time 
domain, and (3) minimal hyper-parameter tuning. 

In Section 3, application results of the FRR method were discussed. 
We firstly applied the method on a simulated dataset, where the true 

Fig. 10. Illustration of the time warping functions in the alignments. The columns correspond to the time warping functions for trials 1, 100, 300, 500 and 600, 
respectively. Row (a): by the manual linear time warping. Row (b): by the shifting model in (Williams et al., 2020). Row (c): by the FRR method. 

Fig. 11. Illustration of the experiment task. The data used in this analysis have 
the starting point at the target located on the top left corner (target 1, the cyan 
square 1). The monkey will move the cursor from target 1 to the target on the 
bottom left corner (target 2, red box 2), the target on the bottom right corner 
(target 3, green square 3), the target on the top right corner (target 4, blue box 
4) and in the end back to target 1, as shown by the gray circular arrow in the 
center. The dashed black line is one of the observed trajectory in the experi-
ment, shown as an example. 
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firing rate functions and true time warping functions were known. The 
output showed that the FRR method had the firing rate functions and 
time warping functions precisely estimated. Although some patterns in 
the true curves were not caught, in general the shape of the estimated 
curves was close to the true curves. As a comparison, we also tried the 
piecewise linear model proposed by Williams et al. (2020)). Both the 
plots of the estimated curves and the RMSE values agreed that the FRR 
method had better performance in this study. Then we applied the 

Fig. 12. The monkey decoding data. Row 1 to row 6: 6 example neurons from the total 110 neurons. The cyan, red, green, blue points represent the times targets 1, 2, 
3, 4 are reached, respectively. Row 7: the histogram of the time when target 2 (red), 3 (green), 4 (blue) are reached, respectively. Column (a): the raw data, aligned by 
the time target 1 is reached. Column (b): the data aligned by a 4-knot piecewise linear model. Column (c): the data aligned by the FRR method. 

Table 3 
The standard deviation (STD) and interquartile range (IQR) of the time reaching 
target 2, 3 and 4 with respect to different cases.  

Method Target 2 Target 3 Target 4  
STD IQR STD IQR STD IQR 

Raw Data  0.29  0.50  0.32  0.54  0.30  0.42 
Piecewise Linear Model  0.18  0.20  0.10  0.12  0.20  0.21 
FRR Method  0.19  0.28  0.11  0.12  0.10  0.14  

Fig. 13. Illustration of the time warping functions in the alignments. The columns correspond to the time warping function for trials 1, 15, 30, 45 and 55, 
respectively. Row (a): by the 4-knot piecewise linear model. Row (b): by the FRR method. 
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method on two real-world datasets. For the motor cortex dataset, two 
time markers were recorded together with the spike data. The raw data 
and a naive piecewise linear alignment based on the time markers on the 
raw data both contained no clear pattern. In contrast, the FRR alignment 
result showed oscillation patterns in many neurons, which agrees to the 
result of the shifting model. However, the shifting model cannot make 
the two time markers concentrated, while the FRR method can. This 
application indicated that the FRR method had the comparable ability to 
uncover hidden patterns as the piecewise linear model, but the FRR 
method can also take into consideration the object’s major action in-
formation, which the piecewise linear model cannot. For the monkey 
decoding dataset, there were 5 time markers with two to be the starting 
point and ending point, and three in the middle, coming from 4 targets. 
It was difficult to obtain information from the raw data, and manually 
aligning all the time markers was a big challenge. Through the FRR 
alignment, we had all the time markers concentrated. As a result, pat-
terns in the data can be easily obtained. In comparison, the piecewise 
linear models were able to align the middle three time markers, while 
the first and last time markers became dispersed. 

In conclusion, the proposed FRR method is an effective way to handle 
temporal precision problems in spike train data, based on the theoretical 
properties and applications discussed in this paper. However, the 
method still has large room to be further improved. At first, the trans-
formation from spike time to function values requests a large enough 
number of spikes. If the true firing rate is low, it will be unlikely to 
observe enough signals and in this way, the FRR method will have large 
errors due to poor estimation of the firing rate or density function. We 
will explore new methodologies to address this issue. Moreover, the bin 
size in the binning method and kernel function in the smoothing pro-
cedure in this paper are still ad hoc. We will investigate methods to 
integrate them under one framework. Finally, this paper has focused on 
the comparison of FRR and piecewise linear models. We will explore 
comparisons of FRR and other alignment methods on spike trains such as 
soft-DTW (Cuturi and Blondel, 2017) in the future. 
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