
fncir-13-00075 December 7, 2019 Time: 11:12 # 1

ORIGINAL RESEARCH
published: 10 December 2019
doi: 10.3389/fncir.2019.00075

Edited by:
Desdemona Fricker,

UMR 8119 Centre de Neurophysique,
Physiologie, Pathologie, France

Reviewed by:
Adrien Peyrache,

McGill University, Canada
Federico Stella,

Radboud University, Netherlands

*Correspondence:
Zishen Xu

zx16@my.fsu.edu
Wei Wu

wwu@stat.fsu.edu
Aaron A. Wilber

awilber@fsu.edu
Benjamin J. Clark

bnjclark@unm.edu

†These authors have contributed
equally to this work

Received: 13 June 2019
Accepted: 12 November 2019
Published: 10 December 2019

Citation:
Xu Z, Wu W, Winter SS,

Mehlman ML, Butler WN,
Simmons CM, Harvey RE,

Berkowitz LE, Chen Y, Taube JS,
Wilber AA and Clark BJ (2019) A
Comparison of Neural Decoding
Methods and Population Coding

Across Thalamo-Cortical Head
Direction Cells.

Front. Neural Circuits 13:75.
doi: 10.3389/fncir.2019.00075

A Comparison of Neural Decoding
Methods and Population Coding
Across Thalamo-Cortical Head
Direction Cells
Zishen Xu1*†, Wei Wu1*†, Shawn S. Winter2, Max L. Mehlman2, William N. Butler2,
Christine M. Simmons3, Ryan E. Harvey4, Laura E. Berkowitz4, Yang Chen1,
Jeffrey S. Taube2, Aaron A. Wilber3*† and Benjamin J. Clark4*†

1 Department of Statistics, Florida State University, Tallahassee, FL, United States, 2 Department of Psychological and Brain
Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States, 3 Department of Psychology,
Program in Neuroscience, Florida State University, Tallahassee, FL, United States, 4 Department of Psychology, University
of New Mexico, Albuquerque, NM, United States

Head direction (HD) cells, which fire action potentials whenever an animal points its
head in a particular direction, are thought to subserve the animal’s sense of spatial
orientation. HD cells are found prominently in several thalamo-cortical regions including
anterior thalamic nuclei, postsubiculum, medial entorhinal cortex, parasubiculum, and
the parietal cortex. While a number of methods in neural decoding have been developed
to assess the dynamics of spatial signals within thalamo-cortical regions, studies
conducting a quantitative comparison of machine learning and statistical model-based
decoding methods on HD cell activity are currently lacking. Here, we compare statistical
model-based and machine learning approaches by assessing decoding accuracy and
evaluate variables that contribute to population coding across thalamo-cortical HD cells.

Keywords: spatial behavior, navigation, memory, anterior thalamus, parahippocampal, parietal

INTRODUCTION

Animals can navigate by monitoring an online record of their spatial orientation in an environment
and using this information to produce direct trajectories to hidden goals (Cullen and Taube,
2017; Epstein et al., 2017; Moser et al., 2017). Head direction (HD) cells, which fire action
potentials whenever an animal points its head in a particular direction, are thought to subserve
the animal’s sense of spatial orientation (Taube et al., 1990a,b; Taube, 1995, 2007). The direction
of maximum response, or the preferred firing direction, varies between cells, such that a
small population of HD cells can encode the full range of possible HDs. HD cells are found
prominently in anterior thalamic nuclei (ATN), including the anterodorsal, anteroventral, and
anteromedial thalamic nuclei (Taube, 1995; Tsanov et al., 2011; Jankowski et al., 2015; for
review see Clark and Harvey, 2016); in parahippocampal regions such as the postsubiculum
(PoS) (Taube et al., 1990a), medial entorhinal cortex (MEC), and parasubiculum (PaS)
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(Sargolini et al., 2006; Boccara et al., 2010); and in dorsal cortical
regions such as the parietal cortex (PC) (Chen et al., 1994a,b;
Wilber et al., 2014; reviewed in Clark et al., 2018).

Several studies have reported that simultaneously recorded
populations of HD cells tend to maintain coherence across
their preferred firing directions (Taube et al., 1990b; Taube,
1995; Johnson et al., 2005; Peyrache et al., 2015; Bassett et al.,
2018). For example, Taube et al. (1990b) recorded pairs of HD
cells in the PoS simultaneously and found that cells responded
similarly, with the same angular relationship with one another,
across a broad range of environmental manipulations and
testing procedures. Coherence between HD cells has also been
reported across the ATN and PoS (Peyrache et al., 2015) and
between HD cells in the ATN and place signals within the
hippocampal formation (Knierim et al., 1998; Hargreaves et al.,
2007). However, a recent study suggests that the coherence
of HD cell populations recorded from the mouse MEC and
PaS may become uncoupled during some environmental cue
manipulations (Kornienko et al., 2018). Another previous
study subjectively noted that decoding accuracy by ATN HD
cell populations is superior to PoS HD cell ensembles (see
Supplementary Figure S1 in Viejo et al., 2018). We are unaware
of other studies that have quantified the accuracy of HD cell
population coding across thalamo-cortical circuitry.

Although a number of methods have been developed to assess
the dynamics of thalamo-cortical HD signals (e.g., Rybakken
et al., 2018; Viejo et al., 2018; Fresno et al., 2019), few studies
have conducted a quantitative comparison of neural decoding.
Statistical model-based approaches have generally been favored
with respect to studying population activity of the HD cell system,
however recent advances have stimulated new interest in using
machine learning approaches for neural decoding. Model-based
methods directly characterize a probabilistic relationship between
neural firing and HD, while machine-learning approaches assume
a “black-box” neural network to describe the relationship.
Although machine learning methods can in general deal with
complex relationships in datasets, they depend on a multi-layered
structure and come with a significant time cost.

A central aim of the present study was to provide a comparison
of the various methods used to assess the neural dynamics of
spatial behavior. Specifically, we compare linear methods such as
Kalman Filter, Vector Reconstruction, Optimal Linear Estimator,
and Wiener Filter and non-linear methods such as Generalized
Linear Models and Wiener Cascade. We compare these statistical
model-based methods with several machine learning methods.
In addition, we present a quantitative assessment of population
coding by HD cells within the ATN, PoS, PaS, MEC, and PC and
explore contributing variables to decoding accuracy such as the
number of classified HD cells per dataset as well as the firing rate
and tuning strength of HD cell populations.

MATERIALS AND METHODS

Datasets
Neuronal recordings analyzed in the present report were
presented in previous work (Wilber et al., 2014, 2017;

Winter et al., 2015a,b; Butler and Taube, 2017). Briefly, for
data collected in ATN, PoS, PaS and MEC, 4 female Long-Evans
rats (3–6 months of age) were used (5 recording sessions or
datasets/region; 1–2 rats/region). Rats were either surgically
implanted with moveable microdrives containing four tetrodes
targeting the PoS, PaS, or MEC (Winter et al., 2015a,b), or
eight individually moveable stereotrodes targeting the ATN
(Butler and Taube, 2017). Neural activity in PoS, PaS, or MEC
was recorded while animals foraged for scattered food in a
large square enclosure (120 × 120 cm; 50 cm in height; session
duration: 10–20 min) and in the ATN while rats foraged in a small
cylindrical environment (71× 50 cm; session duration: 8 min).

For data collected in PC, 4 male Fisher-Brown Norway hybrid
rats were used. Rats were 5–10 months of age at initial surgery
and were implanted with an 18-tetrode electrode array targeting
the PC (for details see Wilber et al., 2014). Recordings were
conducted while rats performed a “random lights” task in which
the animal visited one of 32 light/reward zone located along the
perimeter of a large circular open field (4 ft in dia). Each zone was
rewarded with medial forebrain stimulation. Animals made up to
900 light/reward zones visits in a single recording session (session
duration:∼45 min). Each visit to the light/reward zone consisted
of the animal making a trajectory from one end of the open field
to the other. Because the light/reward zones were presented in
a random order, the animal’s cumulative path for each session
resulted in wide spatial and HD coverage in the environment.
These experiments were carried out in accordance with protocols
approved by the University of Lethbridge Animal Welfare
Committee or Dartmouth College’s Institutional Animal Care
and Use Committee and conformed to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

For all datasets, electrical signals were pre-amplified on a
headstage (HS18 or HS27) and were recorded using a Digital
Lynx Data Acquisition System (Neuralynx, Bozeman, MT), and
thresholded (adjusted prior to each session) spike waveforms
(filtered 0.6–6 kHz, digitized at 32 kHz) and timestamps were
collected for each session. Rat position and HD were tracked
by either using red and green LEDs attached to the animal’s
headstage (secured ∼8 cm apart) or by using colored domes of
reflective tape which were created by covering 1/2 Styrofoam
balls in reflective tape. A video tracking system provided x-y
coordinates of each LED or Styrofoam ball position at a sampling
rate of 30–60 Hz as interleaved video. However, for one animal
included in the PC datasets, data was collected at 30 Hz (rat 4)
and co-registered with spikes and stimuli.

For PoS, PaS, MEC, and ATN datasets, spike sorting was
conducted using SpikeSort3D (Neuralynx, Bozeman, MT). First,
waveform characteristics from each tetrode/stereotrode were
plotted as scatterplots from one of the four tetrode wires and
signal waveform characteristics (amplitude, peak and valley)
were used for cell isolation. Individual units formed clusters of
points in these plots and the boundaries were identified and
manually “cut.” For PC datasets, spike data were automatically
overclustered using KlustaKwik1 then manually adjusted using a
modified version of MClust (A.D. Redish).

1http://klustakwik.sourceforge.net
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HD Cell Categorization
ATN, PoS, PaS, and MEC Recordings
The HD of the animal was determined by the relative position
of the red and green LEDs. The amount of time and number of
spikes in each HD was sorted into sixty 6◦ bins. The firing rate
for each 6◦ bin was determined by dividing the number of spikes
by the amount of time. A firing rate by HD plot was constructed
for each cell in the dataset and the directionality of each cell was
quantified using a number of measures. First, we computed the
mean vector length (Rayleigh r) for each cell. The mean vector
length ranges between 0 and 1, with higher values indicating
that spike occurrence is clustered around a particular direction.
Second, we computed a stability score for each cell. Stability was
calculated by dividing the recording session into four equal time
bins and cross-correlating the 60 directional firing bins across
each time bin and averaging these values (Directional Stability =
(Q1:Q2 + Q1:Q3 + Q1:Q4 + Q2:Q3 + Q2:Q4 + Q3:Q4)/6).
Because the mean vector length is susceptible to reporting
high values when cells display low firing rates, we used a dual
criterion for classifying neural activity as an HD cell. Cells were
classified as an HD cell if the resulting mean vector length and
directional stability scores exceeded the 95th percentile chance
level generated by shuffling the neural data (see Boccara et al.,
2010; Winter et al., 2015a). Briefly, each cell had its sequence
of spikes time-shifted relative to the animal’s tracked location
and HD (400 iterations for each cell) and the mean vector
length and stability was calculated for each iteration. The 95th
percentile value for each region was taken as the cut-off criteria
for cell inclusion. In addition, cells with criteria values below the
mean cutoff across brains regions, without clear directionality
and repeat recordings were removed from further analysis.
A sample of 5 recording sessions or datasets per brain region
was selected. Each dataset contained at least 5 simultaneously
recorded HD cells that met the criteria outlined above (n = 20
datasets from 4 rats).

PC
Cells not sufficiently active during maze sessions (< 250
spikes/session; session = ∼50 min) were excluded from all
analyses (39 cells excluded so 339 putative pyramidal cells
remained). Data from video frames in which HD tracking was
lost or segments in which the rat was still for relatively long
(60 s) periods (calculated from smoothed positioning data)
were excluded. Occupancy data were binned per 6◦ of HD
and converted to firing rate (spikes/s). Rayleigh statistics were
calculated using a combination of custom Matlab scripts and the
circular statistics toolbox (Berens, 2009). Because directionally
modulated PC cells typically expressed low firing rates across
behavioral testing, we adjusted the HD cell classification
criteria to assess stability across a longer recording duration.
Thus, neurons were classified as HD cells if (1) they had a
significant Rayleigh test for unimodal deviation from a uniform
distribution corrected for binned data on the collapsed-across-
behavioral-sessions firing rate data (p ≤ 0.05) and (2) they
were stable (change in peak vector direction of < 7 bins)
across behavioral sessions (or split 1/2 sessions when data
were not available for two consecutively recorded sessions).
All datasets for which at least 3 HD cells met these criteria

were included in the present paper (n = 7 sessions from
3 rats; 2 session from rat #1; 2 sessions from rat #3; 3
sessions from rat #4).

Neural Decoding Methods
Twelve decoding methods were applied. Six are statistical
model-based methods: Kalman Filter, Generalized Linear Model,
Vector Reconstruction, Optimal Linear Estimator, Wiener Filter
and Wiener Cascade. The remaining six are machine learning
methods: Support Vector Regression, XGBoost, Feedforward
Neural Network, Recurrent Neural Network, Gated Recurrent
Unit, and Long Short-Term Memory. The python code for
Wiener Filter, Wiener Cascade and the machine learning
methods is from the freely available Neural Decoding package
from Glaser et al. (2017)2. Head direction data were transformed
using directional cosines, then fed into the decoding algorithm,
then transformed back to polar coordinates (Gumiaux et al., 2003;
Wilber et al., 2014, 2017). For better explanatory power, a four-
fold cross-validation is applied in this paper. Since the data have a
time series structure and so do the models, it was not appropriate
to use a middle portion as testing where the training data is
not continuous. Thus, we only included two cases: upper 3/4 of
the dataset to be training (UT) and lower 3/4 of the dataset to
be training (LT).

Statistical Model-Based Methods
Kalman Filter
The Kalman Filter model (Kalman, 1960) is a hidden Markov
chain model that uses HD (trigonometric) as the states and spike
counts as the observations.

The relationship between these variables is shown in Figure 1.
The model assumes that the HD follows a first-order auto-

regression structure with additive Gaussian noise. The model is
given as: {

EXt+1 = AEXt + Ewt
EYt = H EXt + Eqt

where EXt is the centralized trigonometric HD vector (centralized
[cos, sin] vector) at time t; EYt is the centralized spike counts
vector for all observed brain cells at time t; Ewt , Eqt are the random
noises where Ewt ∼ N (0, W), Eqt ∼ N (0, Q), and Ewt, Eqt are

2https://github.com/KordingLab/Neural_Decoding

FIGURE 1 | Graphic representation of the Kalman Filter and Generalized
Linear Model: The main model is a hidden Markov chain structure. HDs follow
a Markov chain and spike counts at the current time bin are independent from
the counts from previous time bins.
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independent. The Kalman Filter method assumes a mean of zero
for the noise model, so, the mean spike count must be subtracted
from the neural data, i.e., we “centralized the spike counts.”
Note that since EXt and EYt are centralized, no intercept term is
included in the model.

For parameter fitting, the classical approach, maximum
likelihood method (MLE) is used to obtain the values of
A, W, H, Q (see Supplementary Material S1). For decoding,
the Kalman Filter algorithm (Wu et al., 2006) is applied to predict
EXt given EYt after the estimation of model parameter (see the
algorithm in Supplementary Material S2).

Generalized linear model
Similar to the Kalman Filter model, the generalized linear model
is also a hidden Markov Chain model with HD (trigonometric)
as the states and spike counts as the observations (Figure 1).
The model assumptions are: (1) the HD itself is a first-order
autoregression model with additive Gaussian noise; (2) the HD
and spike counts at the same time point follow a Poisson log-
linear model; and (3) the spike counts from each observed brain
cell are conditional independent given the HD at the same time
point. The model is:{

EXt+1 = AEXt + Ewt
Yt,c| EXt ∼ Poisson(λt,c)

Where EXt is the centralized trigonometric HD vector at time t;
Yt,c is the spike counts for brain cell c at time t and

{
Yt,c

}C
c=1 is

independent given EXt ; Ewt is random noise with Ewt ∼ N (0, W),
λt,c = eµc+EaT

c EXt . Similarly, there is no intercept term in the
autoregression model because EXt has been centralized.

To fit the model parameters A, W, µc, Eac, we again use
the maximum likelihood method (Lawhern et al., 2010; see
Supplementary Material S3). For decoding, the Point Process
Filter method (Eden et al., 2004) is applied to predict the HD
given the spike counts (see the algorithm in Supplementary
Material S4). Based on the model, the mean of Yt,c given EXt can

be numerically approximated by λ̂t,c = eµ̂c+̂Ea
T
c EXt after parameter

estimation, so the mean curve of spike counts among different
HDs can be obtained.

Vector reconstruction
Since the training dataset contains the HD and spike counts
at each observed time bin, we can make an estimation of the
preferred direction for each cell (Georgopoulos et al., 1983). The
estimation is done by fitting a cosine curve to the plot of firing
rate and HD from the training data. The angle at the peak of the
curve, which is the phase of the cosine function, is treated as the
angle of the fitted preferred direction for the cell. In other words,
ÊLc =

[
cosθ̂, sinθ̂

]T
will be the fitted unit direction vector for cell

c. The prediction of the HD given firing rates can then be obtained
by computing the average of the direction vectors, weighted by
the corresponding cell’s firing rate, as in Johnson et al. (2005).

φest (t) = angle

[ C∑
c=1

fc (t) ∗ ÊLc

]

Where fc (t) is the given firing rate of cell c at time t; ÊLc is the
fitted preferred direction vector for cell c; φest (t) is the predicted
HD at time t; angle (•) returns the angle of the input vector (see
the computation in Supplementary Material S5).

To achieve an accurate reconstruction with this method, there
are several critical criteria for the training dataset. First, the data
should have a sufficiently strong unimodal peak for a specific
HD and firing rate, or else the estimation of preferred directions
will be poor. Second, the preferred direction vectors must cover
the full range of directions from 0◦ to 360◦. Without input data
covering some HDs, some predicted HDs may never be achieved
(see Figure 2).

Optimal linear estimator
The Optimal Linear Estimator (OLE) method (Salinas and
Abbott, 1994) is similar to the vector reconstruction method that
estimates a direction vector for each cell and uses the weighted
average over those vectors with firing rates as the weights to make
a prediction of the HD. Since Vector Reconstruction and Optimal
Linear Estimator both depend on the preferred direction vector
(unlike other decoding methods), these methods are especially
susceptible to inhomogeneity of preferred directions as illustrated
in Figure 2. The vector, ÊDc for cell c, unlike the preferred direction
vector, is obtained by finding the optimal solution that minimizes
the squared error between the estimated and true HD vector,
averaged over firing rates and true direction vectors, i.e.

D̂ = argmin
D

∫ (
EV − EVest

)2
∗ P

(
Er | EV

)
dErd EV

Where EV is the true HD vector; EVest =
C∑

c=1
rc∗ EDc is the estimated

HD vector; Er = [r1, r2, . . . rC]T is the firing rate for each
brain cell; D =

[
ED1, ED2, . . . EDC

]
is the matrix of all the

vectors to find.

FIGURE 2 | Illustration of the coverage of the full range of HDs: If all the
preferred direction vectors cover only half of the possible HDs, then the
vectors in the other half circle cannot be achieved by a non-negative weighted
linear combination of these vectors, so the predicted angles will not cover all
values between 0◦ and 360◦.
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The solution for D̂ can be computed by taking the derivative
of the formula above, which results in:

ÊDc =

C∑
i=1

(
Q̂−1

)
ci
∗ ÊLc

Where ÊLc is the numerical approximation of the center of mass
vector for the tuning curve function of cell c; Q̂ is the numerical
approximation of the correlation matrix of firing rates for all cells
(see details in Supplementary Material S6).

With fitted D̂, the prediction of the HD at time t, as stated
above, is

φest (t) = angle

[ C∑
c=1

rc (t) ∗ ÊDc

]

The OLE method also has the prerequisite on the training dataset
like the vector reconstruction method that the non-negative
linear combination of ÊDc should cover all directions from 0◦
to 360◦, or else the prediction can never achieve some angles
(see Figure 2).

Wiener Filter
The Wiener Filter model (Wiener, 1949) is a classical regression
method that builds a multiple linear regression relation between
the HD and the firing rate from every observed cell at the
corresponding time bins. This model is the basis of all the
statistical filtering methods. Computational details are given in
Supplementary Material S7.

Wiener cascade
The Wiener Cascade model (Hunter and Korenberg, 1986) is a
direct extension of the Wiener Filter model that first applies a
multiple linear regression model on the HD vs. the firing rate
from each cell, and then builds a non-linear model on the fitted
values from the linear model vs. the true firing rate values. In
the present paper, the order of the polynomial in the non-linear
component was searched by Bayesian Optimization (see section
Machine Learning Methods below). Computational details are
also given in Supplementary Material S7.

Machine Learning Methods
To conduct HD decoding, we also used the following 6 machine
learning methods. The selection on input-output is consistent for
each method. In these methods, together with Wiener Cascade,
there exists some free parameters that are not tuned during
training. Instead they are set before the optimization process.
These values are called “hyper-parameters.” In this paper, hyper-
parameter selection was based on Bayesian Optimization (Snoek
et al., 2012, freely available python package3). It searched over a
range of values for the hyper-parameters and chose the optimal
one. Further detail is provided in Supplementary Material S8.

Support vector regression
The support vector regression (Drucker et al., 1996) is a machine
learning tool that uses a non-linear kernel to project the input

3https://github.com/fmfn/BayesianOptimization

to another space and then builds a linear model on the projected
input and the output. In this manuscript, a radial basis function
kernel was applied. The penalty parameter of the error term
and the maximum number of iterations were searched by
Bayesian Optimization.

XGBoost
XGBoost (Chen and Guestrin, 2016) is a machine learning
algorithm that implements the idea of gradient boosted trees.
It builds a sequence of regression trees. The first tree is for
predicting the HDs using the firing rates, while each subsequent

FIGURE 3 | The structure of feedforward neural network and Recurrent
Neural Network (RNN): Top: The typical structure of a feedforward neural
network. Each unit will calculate a weighted sum of the units in the previous
layer that connect to it by an arrow. Then by adding an intercept term and
transforming the value by an activation function, the unit obtains the value it
sends out. Bottom: the structure of a Recurrent Neural Network component.
The input vectors are connected by a chain hidden layer. Each hidden unit is
the transformed value of the linear combination of the corresponding input
unit and previous hidden unit. The last hidden unit value (vector) will be
transformed by another non-linear function and sent to the dense layer to
compute the output.
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tree is built on the firing rate vs. the residual of the previous
fit. In this manuscript, the total number of trees, maximum
depth of each tree and the learning rate were all searched by
Bayesian Optimization.

Feedforward neural network
The feedforward neural network (Haykin, 1994), also called dense
neural network or multi-layer perceptron, is the basic structure
in deep learning. In this method, each two consecutive layers are
fully connected, which means that every unit in the subsequent
layer will be computed by a linear function on the values from all
the units in the previous layer, followed by an activation function
(Figure 3 Top). In the present paper, 3 hidden layers were used.
The activation functions were rectified linear unit, abbreviated as
ReLU (Glorot et al., 2011), for all the hidden layers and linear
for the output layer. To avoid overfitting, we applied the dropout
method (Srivastava et al., 2014). The optimization algorithm was
Adam (Kingma and Ba, 2014). The number of units in the layers,
the dropout rate and the number of epochs were all searched by
Bayesian Optimization.

Recurrent Neural Network
The Recurrent Neural Network is the basic neural network
structure designed for time series data (Haykin, 1994).
A Recurrent Neural Network component includes one
hidden layer, where each unit is a linear combination of
the values from the corresponding input unit and the previous
hidden unit. The last hidden unit value is then transformed
by a non-linear function and finally fully connected to the
output layer (Figure 3 Bottom). In this paper, a series of
Recurrent Neural Network components were applied so that
each component predicts the HD in one time bin, given the
firing rates. The non-linear function was set to ReLU. Similar
to feedforward neural network, the dropout method was
applied. The optimization algorithm was chosen to be RMSprop
(Tieleman and Hinton, 2012). The dimension of the hidden unit,
the dropout proportion and the number of epochs were searched
by Bayesian Optimization.

Gated recurrent unit
The gated recurrent unit (Cho et al., 2014) is a complex recurrent
neural network unit. Its structure (shown in Figure 4 Left) is
similar to the Recurrent Neural Networks but includes gated
units which can better memorize the long-term history.

In this paper, the use of Gated Recurrent Unit (GRU) was
the same as the hidden units in the Recurrent Neural Network
(RNN) component. The GRU component was a chain structure
of several gated units and it was applied to predict HD in one
time bin. The model also applied the dropout method to avoid
overfitting and used RMSprop to be the optimization algorithm.
Same as the RNN methods, the dimension of gated units, the
dropout proportion and the number of epochs were searched by
Bayesian Optimization. An implementation difference was that
the activation function between the output from the recurrent
part and input to the feedforward layer was hyperbolic tangent
(tanh) instead of ReLU since the former is the standard choice for
Gated Recurrent Unit.

Long short-term memory
The Gated Recurrent Unit and Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997) were developed from
Recurrent Neural Network and can better handle the long-term
dependencies (the structure is shown in Figure 4 Right).

Compared to the Gated Recurrent Unit, the Long Short-Term
Memory unit has a more complex structure which includes more
parameters. In the present paper, the use of Long Short-Term
Memory was just a replacement of the Gated Recurrent Unit with
the same settings: optimization algorithm = RMSprop; activation
non-linear function = tanh; dimension of LSTM components,
dropout proportion and number of epochs were searched by
Bayesian Optimization.

Statistical Analyses
Data were analyzed using two-way repeated measures ANOVAs
(e.g., Decoding Method or Brain Region). In order to avoid large
numbers of pairwise post-tests, we determined which factors
were contributing to significant ANOVA results by removing
factors one at a time. We started with the factor that was
furthest from the mean, removed it, and reran the ANOVA. We
repeated this process until the ANOVA was no longer significant.
We also explored factors that may contribute to variability in
decoding accuracy including the number of classified HD cells
per dataset, cell firing rate, HD tuning strength, and angular
head velocity (described in section Factors Influencing Variability
Across Decoding Method, Brain Region, and Datasets). Linear
regression was used to compare decoding accuracy to each of
these factors. For all statistical analyses, p < 0.05 was considered
significant and Matlab statistics toolbox was used for statistical
analyses (Mathworks). Rayleigh statistics were calculated using
a combination of custom Labview and Matlab scripts using the
circular statistics toolbox (Berens, 2009).

RESULTS

As described in section Neural Decoding Methods, cross-
validation has been applied. There are two cross validation
approaches: UT and LT. After running the code for all datasets,
the results of the two cases is consistent. For brevity, only the
results for UT are displayed. The output for LT can be seen in
Supplementary Material S13.1–S13.12.

Neural Decoding
Modeling Tuning Properties
Some decoding approaches use a likelihood model (i.e., firing
rate given HD) in a Bayesian framework to represent individual
single units. Two of the twelve methods we used, the Kalman filter
and Generalized Linear Model, use likelihood representations.
An examination of the likelihood representations is useful for
understanding successful (and unsuccessful) decoding of HD.
Thus, to compare the approaches, we first produced tuning
curve plots (i.e., polar plots) showing the relationship between
the cells firing rate and the animal’s HD (Figure 5; black
curves). The modeling result is overlaid on the firing rate
polar plots (blue curves: Generalized Linear Model estimation,
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FIGURE 4 | The structure of Gated Recurrent Unit and Long Short-Term Memory units: Left: this is the structure of the Gated Recurrent Unit (GRU). The “update
gate” zt is used to determine if the update h̃t will be applied to ht. rt is the “reset gate” and is used to determine if the previous hidden value (also the output value)
ht-1 will be kept in the memory. The effects of the two gates are achieved by sigmoid activation functions which can be learned during training. Right: The structure
of the Long Short-Term Memory (LSTM) unit. LSTM is complex and includes one more hidden value Ct and more gates compared to GRU. Each gate can be seen in
the plot where the σ sign appears (i.e., sigmoid activation function). The first σ is the “forget gate” which controls whether previous hidden value, Ct-v will be used to
calculate current output and kept in the memory. The second σ is the “input gate” which controls whether the new input will be used to calculate current output. The
third σ is the “output gate” which filters the output, i.e., controls what part of the output values to send out as ht.

red curves: Kalman Filter estimation). One can roughly assess
the model fitness for these two methods by visually comparing
the similarity between the estimated tuning curve and the true
tuning curve. By comparing the black (true), blue (Generalized
Linear Model) and red (Kalman Filter) curves, it is apparent
that Generalized Linear Model estimations are more similar to
the true curves compared to the Kalman Filter estimations. The
poorer performance of the Kalman Filter is likely a consequence
of the model assumption. Specifically, the Generalized Linear
Model proposes a Poisson distribution on the discrete spike
count, which is more appropriate than the Gaussian distribution
assumed by the Kalman Filter model.

Decoding Output
After training the model, we decoded the HD for the validating
data and contrasted the decoding result with the true values. As
a first-step, we visually compared the true and reconstructed HD
as a function of time (Figure 6). This revealed that while some
approaches are more accurate than others, all approaches were
capable of producing at least moderately accurate decoding.

Next, we quantified decoding accuracy by calculating the
median absolute error (MAE) and comparing this measure

across datasets and brain regions. The median absolute error is
computed by taking the circular difference between the predicted
and true angle, rescaling the angle difference to be within [−180◦,
180◦], taking the absolute value of this angle, and then calculating
the median value. For instance, if the true angle is 10◦ and
the predicted angle is 350◦, then the absolute difference after
rescaling is 20◦. The median absolute error, MAE, is:

MAE = median
t=1, 2 ... T

∣∣rescale [φ (t)− φest (t)]
∣∣

where φ (t) is the true valid HD at time t, φest (t) is the predicted
HD at time t, rescale (θ) is the function that changes the angle θ

to be within [−180◦, 180◦].
For comparison, we also computed the average absolute error

(AAE). Compared to the median, the average is much more
sensitive to outliers and extreme values, so the AAE values turn
out to be larger and not as stable as the MAE. As a result, we used
the MAE as the measure of decoding performance for the main
text in this paper. The result associated with AAE can be seen in
Supplementary Material S14.1–S14.16.

Frontiers in Neural Circuits | www.frontiersin.org 7 December 2019 | Volume 13 | Article 75

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00075 December 7, 2019 Time: 11:12 # 8

Xu et al. Thalamo-Cortical HD Cell Population Coding

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

PoS04 Cell4

0

30

60
90

120

150

180

210

240
270

300

330

0

0.5

1

PaS04 Cell5

0

30

60
90

120

150

180

210

240
270

300

330

0
10
20
30
40

ATN03 Cell5

0

30

60
90

120

150

180

210

240
270

300

330

0
0.5

1
1.5

2

MEC02 Cell4

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

3

PC02 Cell2

Binned Average
KF Estimate
GLM Estimate

FIGURE 5 | The true-vs.-estimated tuning plots in 6-degree bins for one HD
cell in each brain region: The polar plots show firing rates vs. HD. The black
curves are the true tuning functions, smoothed by a Gaussian kernel function.
The red curves are the estimated functions using the Kalman Filter (KF)
method and the blue curves are the estimated functions using the Generalized
Linear Model (GLM) method.

MAE is negatively related to prediction accuracy such that
a smaller MAE indicates better prediction accuracy. Twenty-
seven datasets from 5 brain regions were decoded using each
of the 12 methods. The MAE was calculated for each dataset
and method. All values and dataset details are shown in the
Supplementary Material S9.1.

Figure 7 shows the MAE for each method, brain region, and
dataset. Notably, the Vector Reconstruction method and Optimal
Linear Estimator methods produced larger MAE compared to
other methods. The LSTM method had the smallest average
MAE value (34◦). Regardless of the decoding method, MAE
varied dramatically across datasets and brain regions. The
average decoding accuracy was greatest in ATN, with datasets
from this region expressing the lowest measures of MAE. For
parahippocampal cortex and PC, MAE was greater relative to
ATN, and progressively increased in a topographical manner
from POS < PaS < MEC < PC. Finally, within each brain
region, MAE values varied substantially for different datasets. For
example, PC datasets PC_02 and PC_03 have much larger MAE
values than the other PC datasets. This suggests that other factors
in addition to regional differences may contribute to variability in
decoding accuracy.

Decoding Accuracy as a Function of
Computational Method and Brain Region
Decoding Accuracy Across Computational Methods
Next, we aimed to quantify the variance observed across decoding
methods. The Optimal Linear Estimator method and Vector
Reconstruction method appear to have large error relative to
the other 10 methods (see Figure 7). Therefore, we compared
MAE values collapsed across datasets and brain regions. As
expected, we found that decoding accuracy varied significantly

across computational methods [F(11, 312) = 7.27, p < 0.001;
Figure 8]. Next, to determine which methods were contributing
to this variance, we removed data from one method at a
time starting with the method furthest from the mean (Vector
Reconstruction) and repeated the ANOVA until a non-significant
result was obtained (see section Materials and methods). It was
necessary to remove both Vector Reconstruction and Optimal
Linear Estimator methods before decoding accuracy no longer
varied significantly across method [F(9, 260) = 1.00, p = 0.44],
suggesting that decoding accuracy is similar for the remaining
10 methods. Potential causes of the poor performance for the
Vector Reconstruction and Optimal Linear Estimator methods
are explored in the section Factors Influencing Variability Across
Decoding Method, Brain Region, and Datasets.

Decoding Accuracy Varied Across Brain Regions
In addition to variability across decoding methods, we
observed variance in MAE across the 5 brain regions (see
Figure 7). It is visually apparent that MAE is topographically
organized such that the measure progressively decreases from
PC > MEC > PaS > PoS > ATN, however, there is considerable
overlap between the decoding accuracy across these brain regions
(Figure 9). We therefore quantified the effect of brain region
for each decoding method and collapsed across datasets. We
found that for most methods (11/12), accuracy significantly
varied across brain region [Figure 9 and Supplementary
Material S10; F(4, 22) > 2.82, p < 0.05], with the exception of
Vector Reconstruction [F(4, 22) = 1.27, p = 0.31]. Further, for
the 11 methods with significant variance across brain region,
ATN accuracy was highest and furthest from the mean. For 9
of the methods, removing ATN resulted in a non-significant
ANOVA [F(3, 18) < 3.16, p > 0.05]. The only exceptions were
Support Vector Regression and Long Short-Term Memory.
For these methods, it was necessary to also remove the brain
region that was the second furthest from the mean, PC
[F(2,12) < 3.89, p > 0.05].

We also investigated whether our findings above could
be influenced by variability in the animal’s movement
characteristics. We first measured whether there were significant
biases in the animal’s trajectory by determining the dwell time
in each HD. Plotting the data in this way demonstrates that
good coverage of the full range of HDs occurred for all datasets
from each brain region (Supplementary Material S11). We
next measured the animals angular head velocity (absolute
angular velocity calculated across 0.2 s time bins). The ANOVA
determined that the absolute angular head velocity varied
significantly across brain region [F(4, 22) > 6.814, p < 0.001].
When PC was removed, the ANOVA was no longer significant
[F(3, 16) < 2.462, p > 0.1; consistent for both UT and LT
datasets]. On average, fewer high velocity head movements
were performed by rats in the PC datasets (mean: 41◦/s). This
observation is not entirely surprising given that animals in the
PC datasets performed a task involving direct trajectories to
a goal location (Wilber et al., 2014), which contrasts with the
varied head movements made during random foraging in the
other datasets (see section Datasets). Finally, a linear regression
found that the relationship between the absolute angular head
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FIGURE 6 | The true-vs.-predicted head angle plotted as a function of time for a representative ATN dataset for each of the 12 decoding methods: The black curves
are the true curves and the red curves are the predicted curves. Test data is shown. Predicted curves are constructed using a model generated from a separate
training segment of the data. The method name and decoding accuracy measured as median absolute error (MAE) are shown on the title of each plot (average
absolute error, AAE, is also shown). KF, Kalman Filter; GLM, Generalized Linear Model; VR, Vector Reconstruction; OLE, Optimal Linear Estimator; WF, Wiener Filte,
and WC, Wiener Cascade. The remaining six are machine learning methods: SVR, Support Vector Regression; XGB, XGBoost; FFNN, Feedforward Neural Network;
RNN, Recurrent Neural Network; GRU, Gated Recurrent Unit; LSTM, Long Short-Term Memory.

velocity and MAE was not significant for Kallman Filter, General
Linear Model, and Optimal Linear Estimator methods (absolute
value of the rs ≤ 0.27, ps ≥ 0.08), but was for all other methods
(absolute value of the rs ≥ 0.34, ps < 0.05).

It should be noted that there are at least three additional
variables that could influence our findings above. First, the
density of HD cells varies considerably across brain regions
(reviewed in Taube and Bassett, 2003; Taube, 2007). So, it is
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FIGURE 7 | The median absolute error is shown for each brain region, each dataset, and each decoding method. Datasets for each brain region are sorted from
lowest to highest median absolute error (i.e., from best to worst decoding accuracy). Note that median absolute error varies considerably within regions and on
average increases from ATN to parahippocampal and PC regions. KF, Kalman Filter; GLM, Generalized Linear Model; VR, Vector Reconstruction; OLE, Optimal
Linear Estimator; WF, Wiener Filter; WC, Wiener Cascade; SVR, Support Vector Regression; XGB, XGBoost; FFNN, Feedforward Neural Network; RNN, Recurrent
Neural Network; GRU, Gated Recurrent Unit; LSTM, Long Short-Term Memory.
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FIGURE 8 | Mean ± 95% Confidence-Interval (CI) Median Absolute Error (MAE) for each decoding method. Data from different brain regions and datasets were
pooled. KF, Kalman Filter; GLM, Generalized Linear Model; VR, Vector Reconstruction; OLE, Optimal Linear Estimator; WF, Wiener Filter; WC, Wiener Cascade; SVR,
Support Vector Regression; XGB, XGBoost; FFNN, Feedforward Neural Network; RNN, Recurrent Neural Network; GRU, Gated Recurrent Unit; LSTM, Long
Short-Term Memory.

possible that some of the variability in decoding accuracy across
brain regions may be an indirect result of HD cell density.
We directly assess the potential influence of the number of

cells on decoding accuracy below (Factors Influencing Variability
Across Decoding Method, Brain Region, and Datasets). Second,
a number of studies have observed that HD cells can vary in
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FIGURE 9 | Decoding accuracy varies across brain regions. The average Median Absolute Error (MAE) for each area and each decoding method. The shading in the
left panel represents the range of the MAE values while the error bars in the right panel represents the 95% Confidence-intervals of the average MAE values for a
representative decoding method. 95% Confidence-interval plots for the remaining 11 methods are shown in Supplementary Material S10. KF, Kalman Filter; GLM,
Generalized Linear Model; VR, Vector Reconstruction; OLE, Optimal Linear Estimator; WF, Wiener Filter; WC, Wiener Cascade; SVR, Support Vector Regression;
XGB, XGBoost; FFNN, Feedforward Neural Network; RNN, Recurrent Neural Network; GRU, Gated Recurrent Unit; LSTM, Long Short-Term Memory; ATN, Anterior
Thalamic Nuclei; PoS, Postsubiculum; PaS, Parasubiculum; MEC, Medial Entorhinal Cortex; PC, Parietal Cortex. ∗∗p < 0.01.

their peak firing rate and other firing characteristics that can
influence the cells signal-to-noise ratio. Again, we evaluate these
variables in the section below (Factors Influencing Variability
Across Decoding Method, Brain Region, and Datasets). Last, it is
important to note that different recording procedures, numbers
of HD cells, behavior testing, and a distinct set of criteria were
used for classification of HD cells for PC datasets. So, the slightly
weaker decoding accuracy in PC could be attributed to one
or all of these variables. Finally, the inclusion criteria for HD
cells do not exclude cell firing which may correlate with HD
but additionally fire relative to other spatial features such as
egocentric bearing (Wilber et al., 2014; Peyrache et al., 2017).

Factors Influencing Variability Across Decoding
Method, Brain Region, and Datasets
Next, we set out to explore factors that could underlie the
variability we observed across brain regions and datasets
(Figure 7). We identified three factors that could influence the
decoding accuracy: the number of observed cells, the HD tuning
strength, and the response rate of the cells.

Number of observed cells
As noted above, the percentage of cells classified as HD cells
varies among the different brain regions (Taube and Bassett,
2003; Taube, 2007). For instance, previous studies report that HD
cells are most abundant in the ATN (∼60%; Taube, 1995) and
slightly more sparse within PoS (∼25%; Taube et al., 1990a; Sharp,
1996) and in other cortical regions such as PC (∼12%; Wilber
et al., 2014). Boccara et al. (2010) found large proportions of
directionally modulated cell types in PoS, PaS, and MEC (53.7,
58.5, and 55.1%, respectively). In the present study, the density

of HD cells varied from 3 to 9, which is within the range of
cell densities reported in other studies using neural decoding
methods (e.g., minimum of 3 cells/session in Johnson et al.,
2005; a minimum of 9 cells/session in Bassett et al., 2018; a
minimum of 6 cells/session in Peyrache et al., 2015). We used
linear regression to assess the relationship between the number
of identified HD cells and the accuracy of decoding (Figure 10).
For 11 of the 12 computational methods, there was a significant
negative correlation with MAE (absolute value of the r > 0.32,
p < 0.05). The correlation between the number of HD cells
and MAE for Vector Reconstruction failed to reach significance
(r = −0.28, p = 0.08). It is possible the lack of significance
for Vector Reconstruction is a consequence of generally poor
decoding by this method. However, for all of the other decoding
methods, the results suggest that as the number of classified
HD cells increases, decoding accuracy improves (i.e., there is
less error). The correlations (r-values) between MAE and head
angular velocity were smaller than the correlations between MAE
and the number of cells [t(22) = 4.77, p < 0.001].

Given that the number of cells influences decoding accuracy,
we next investigated whether the regional differences reported
in the previous section can be explained by the number of cells
per datasets. To address this question, we repeated our decoding
analyses on datasets composed of a random subsample of at least
3 cells. For datasets with 6 or more cells, we split the datasets
in half, each composed of 3 randomly selected cells (without
repeats). Due to the higher computational demands of machine
learning approaches, and the similarity in results between
model-based and machine learning methods (see Figure 7), we
only used model-based methods to investigate this question.
In short, the results of this analysis again indicate superior

Frontiers in Neural Circuits | www.frontiersin.org 11 December 2019 | Volume 13 | Article 75

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00075 December 7, 2019 Time: 11:12 # 12

Xu et al. Thalamo-Cortical HD Cell Population Coding

0 2 4 6 8
0

50

100

M
ed

ia
n 

A
bs

ol
ut

e 
E

rr
or

*KF r=-0.43 p=0.012

0 2 4 6 8
0

50

100
**GLM r=-0.51 p=0.003

0 2 4 6 8
0

50

100
VR r=-0.28 p=0.08

0 2 4 6 8
0

50

100

M
ed

ia
n 

A
bs

ol
ut

e 
E

rr
or

*OLE r=-0.35 p=0.035

0 2 4 6 8
0

50

100
**WF r=-0.55 p=0.001

0 2 4 6 8
0

50

100
**WC r=-0.56 p=0.001

0 2 4 6 8
0

50

100

M
ed

ia
n 

A
bs

ol
ut

e 
E

rr
or

***NN r=-0.62 p<0.001

0 2 4 6 8
0

50

100
***XGB r=-0.59 p=0.001

0 2 4 6 8
0

50

100
***SVR r=-0.64 p<0.001

0 2 4 6 8
Number of Cells

0

50

100

M
ed

ia
n 

A
bs

ol
ut

e 
E

rr
or

***RNN r=-0.58 p=0.001

0 2 4 6 8
Number of Cells

0

50

100
***GRU r=-0.61 p<0.001

0 2 4 6 8
Number of Cells

0

50

100
***LSTM r=-0.61 p<0.001

FIGURE 10 | Scatterplots of median absolute error vs. number of cells for all 12 methods. The dashed line is the fitted linear regression. The correlation coefficient (r)
and the corresponding p-value are shown on the top-right corner of each panel. The significance levels are shown with symbols on the top-left corner ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05. KF, Kalman Filter; GLM, Generalized Linear Model; VR, Vector Reconstruction; OLE, Optimal Linear Estimator; WF, Wiener Filter; WC, Wiener
Cascade; SVR, Support Vector Regression; XGB, XGBoost; FFNN, Feedforward Neural Network; RNN, Recurrent Neural Network; GRU, Gated Recurrent Unit;
LSTM, Long Short-Term Memory.

decoding by ATN units relative to other regions, and similar
decoding across parahippocampal and cortical cell populations
(see Supplementary Material S15.1–S15.6). However, for some
methods, MEC produced weaker decoding relative to other
regions. For all methods, accuracy significantly varied across
brain region [Supplementary Material S15.3; F(4,46) > 2.57,
p < 0.05]. For all model-based methods, ATN accuracy was

greatest and furthest from the mean. For 3 of the methods,
removing ATN resulted in a non-significant ANOVA [F(3,

37) < 2.86, p > 0.05]. For Generalized Linear Model, it was
necessary to also remove the brain region that was second furthest
from the mean, PoS [F(2, 28) < 3.34, p > 0.05], indicating
that for this method, both PoS and ATN had significantly
better decoding. Finally, for Vector Reconstruction and Optimal

Frontiers in Neural Circuits | www.frontiersin.org 12 December 2019 | Volume 13 | Article 75

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00075 December 7, 2019 Time: 11:12 # 13

Xu et al. Thalamo-Cortical HD Cell Population Coding

Linear Estimator, MEC was second furthest from the mean
and removing MEC resulted in a non-significant ANOVA [F(2,

27) < 3.34, p > 0.05], indicating that for these methods ATN
had significantly better decoding and MEC had significantly
worse decoding. To summarize, subsampling the number of
cells produced a similar outcome: while decoding is on average
most accurate for ATN cell populations, accurate decoding is
also possible for parahippocampal and cortical regions and is
generally similar across PoS, PaS, MEC, and PC.

Tuning strength
We additionally examined the contribution of the directional
specificity of HD cell tuning to decoding accuracy. We first
removed the influence of the cell’s firing rate by normalizing
each cell’s tuning curve relative to the directional bin with the
peak firing rate. We then calculated the standard deviation
of the standardized firing rate by HD tuning function as
a proxy for tuning strength (Figure 11 Top). Thus, a low
standard deviation would reflect a flat tuning curve, and a high
standard deviation would reflect a large peak in the preferred
direction of the HD cell. Because this measure is independent
of firing rate it is comparable to a measure of signal-to-noise.
Finally, we performed linear regressions for each decoding
method and a set of randomly selected cells from each dataset
(Figure 11 Bottom 4 rows). This analysis indicated that each
decoding method was significantly negatively correlated with
MAE (absolute value of the rs > 0.4451, ps < 0.01). Thus,
poorer tuning, independent of firing rate, is associated with
lower decoding accuracy. Finally, the correlations (r-values)
significantly varied across head angular velocity, tuning strength,
and the number of cells [F(2, 33) = 36.83, p < 0.001]. Next
head angular velocity was removed (furthest from the mean,
see Statistical Methods) and tuning strength r-values were
lower than the number of cells r-values [F(1, 22) = 10.74,
p < 0.01]. Thus, the contribution of the number of HD
cells had a larger impact than the tuning of individual cells
which had a larger impact than the head angular velocity on
decoding accuracy.

Firing rate
HD cell firing rates can vary between different HD cells
(Taube, 2007) and on average the peak firing rate can differ
between recording locations within cortical-limbic regions,
approximately ranging from 2 spikes/s to 120 spikes/s (Blair
and Sharp, 1995; Taube and Muller, 1998; Peyrache et al.,
2015; Lozano et al., 2017). Notably, ATN HD cells on
average express higher firing rates compared to those recorded
in PoS (Blair and Sharp, 1995; Taube and Muller, 1998;
Peyrache et al., 2015) and some preliminary work indicates
that the firing rates of PaS and MEC HD cells are on
average lower than ATN cells (Winter et al., 2015b). In
addition, parahippocampal and cortical HD cells are often multi-
dimensional or conjunctive for other spatial variables which
can influence cell firing rates (Sargolini et al., 2006; Boccara
et al., 2010; Wilber et al., 2014). Thus, because PoS HD cell
populations are more sparsely active in a given recording session
compared to ATN, it would be expected that decoding accuracy

would be relatively low due to the limited spike information
predicting the animals HD.

Thus, to evaluate the relationship between decoding accuracy
and firing rate, we created a measure that we refer to as the
cell’s response rate, which is the proportion of video frames
in which there was HD cell activity (i.e., cell spikes). As
noted above, the number of cells per dataset can influence
measures of MAE. We therefore subsampled one cell from
each dataset, because some datasets had as few as 3 HD
cells. We limited our analysis to the HD cell that expressed
the greatest spike counts for each dataset. This allowed us to
examine the response rate independent of the contribution of
the number of cells. We next generated a histogram of the
spike counts for the selected HD cell in each dataset and
calculated the proportion of video frames in which spikes
occurred (Figure 12). Thus, we hypothesized that a lower
response rate, which is equivalent to a larger proportion of
video frames with no spikes, should predict poorer decoding.
The histograms suggest that, apart from ATN, parahippocampal
and PC regions have very low response rates (less than
half the ATN response rate). Importantly, as expected, MAE
was negatively correlated with the response rate of the cells
and was significant for every decoding method (absolute
value of the rs > 0.3233, ps < 0.05; Figure 12 Bottom
Right and Supplementary Material S12). Interestingly, the
response rate seems to be the weakest contributor to decoding
accuracy compared to number of cells and tuning. However,
response rate was stronger than the absolute angular velocity
[Omnibus ANOVA: F(3, 44) = 30.93, p < 0.001; Even after
removing head angular velocity and tuning the F-test remained
significant: F(1, 22) = 7.73, p ≤ 0.01]. Thus the strongest
predictor of decoding accuracy was tuning strength which was
significantly more predictive than the number of cells which
was significantly more predictive than the response rate, which
was significantly more predictive than the head angular velocity
(i.e., Tuning > Number of Cells > Response Rate > Head
Angular Velocity).

Time Cost for Each Decoding Method
Time cost is an important indicator of the decoding method’s
performance. Table 1 shows the mean elapsed time for training
and testing for each decoding method.

The full table can be seen in Supplementary Material S9.2.
The testing time varies within a few seconds and is largely similar
across the decoding methods. As for training, the time cost of
using machine learning methods (mean: 3473.33 s or 57.88 min)
was considerably greater than statistical model-based methods
[mean: 34.87 s or 0.58 min; t(5) = 3.13, p = 0.013].

DISCUSSION

The general aim of the present study was to compare statistical
model-based and machine learning approaches for decoding
an animal’s directional orientation from populations of HD
cells. Overall, 12 computational models were evaluated using
HD cell recordings from 27 datasets and from across 5
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FIGURE 11 | Tuning influences decoding accuracy. Top Row. Examples illustrating the relationship between scaled standard deviation (scaled STD) and tuning for
single cells from ATN (left), PoS (middle), and MEC (right). The plots of tuning curves were smoothed by a Gaussian kernel function. The scaled STD is computed
by taking standard deviation of the scaled (divided by maximum) firing rate. Bottom 4 Rows. Linear regression data is shown for each decoding method as a function
of scaled STD (i.e., indicator of tuning strength). One cell was randomly selected from each dataset to avoid repeatedly sampling the same decoding score.
∗∗∗p < 0.001; ∗∗p < 0.01.
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FIGURE 12 | Example histograms of spike counts (top three, bottom left and bottom middle), and an example Median Absolute Error (MAE) vs. response rate
scatterplot (bottom right): The dataset’s label and response rate are listed in the title. The example scatterplot illustrates the modest relationship between response
rate and decoding accuracy. Scatterplots for all the 12 methods are shown in Supplementary Material S12. The dashed line in the scatterplot is the fitted linear
regression. Optimal Linear Estimator (OLE).

brain regions (PC, MEC, PaS, PoS, and ATN). Performance
was similar for most methods (10 of the 12), but with
significantly poorer performance by Vector Reconstruction
and Optimal Linear Estimator methods. The generality of
this result is supported by the fact that the findings were
consistent across datasets from different laboratories (i.e.,
PC vs. other datasets), across different HD cell criteria
(i.e., PC vs. other datasets), and across different behavioral
testing procedures and recording environments (i.e., PC vs.

TABLE 1 | The average training time and testing time is shown for each decoding
method grouped by category, model-based methods (above) and machine
learning methods (below).

Method Average training Average testing
time (seconds) time (seconds)

Statistical VR 0.00 2.65

model-based OLE 0.00 2.70

methods KF 0.12 2.65

WF 0.29 0.00

GLM 2.88 2.63

WC 31.58 0.00

Machine SVR 126.88 0.46

learning XGB 339.90 0.02

methods FFNN 3213.17 1.94

RNN 5274.18 2.23

GRU 5548.07 4.15

LSTM 6337.79 4.50

ATN vs. all other datasets). For the Wiener Filter, Wiener
Cascade and the machine learning methods, the prediction
performance was highly accurate. One interesting result is that
the Recurrent Neural Network model has a much simpler
structure than the Gated Recurrent Unit model and Long
Short-Term Memory model. In other words, the Recurrent
Neural Network model has fewer parameters. The decoding
result, however, indicates that these three methods do not
have much performance difference. This result suggests that
the more complex models may be overfitting the data, while
the simpler, Recurrent Neural Network model may capture the
critical parameters.

Both Kalman Filter and Generalized Linear Models are
based on the hidden Markov chain framework. They make
use of a Bayesian framework, assuming that firing rate is
distributed according to HD. These two approaches model
the activity of single cells as a function of HD. As a result,
we can obtain the function curve generated by the model
for spike count with HD as the input, which can be used
as an estimation of the count-angle curve and the tuning
curve. As shown in Figure 5, the Generalized Linear Model
provides a more accurate model of the single cell tuning
curves. Surprisingly, as shown in Figure 7, the more biologically
accurate model of firing rate as a function of HD does not
make the Generalized Linear Model more accurate than the
Kalman Filter model. Instead, the latter has slightly lower
error on average than the former. The decoding method
in Generalized Linear Model, the point process filter, may
account for this behavior. It uses Gaussian distribution for
approximation, which greatly reduces the computation cost on

Frontiers in Neural Circuits | www.frontiersin.org 15 December 2019 | Volume 13 | Article 75

https://www.frontiersin.org/journals/neural-circuits/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-13-00075 December 7, 2019 Time: 11:12 # 16

Xu et al. Thalamo-Cortical HD Cell Population Coding

the non-linear model prediction, but on the other hand may
introduce more errors.

We found significantly poorer performance by Vector
Reconstruction and Optimal Linear Estimator methods. There
are several possible reasons for this inferior performance. For
these methods, there are two critical criteria for the training
dataset. First, the data should have a sufficiently strong unimodal
peak for a specific HD between HD and firing rate, or else the
estimation of preferred directions will be poor. This limitation
may further explain poor decoding performance, particularly
for cortical datasets, as classification of HD cells could include
cells that are stable yet have low mean vector length. Second,
the preferred direction vectors must cover the full range of
directions from 0◦ to 360◦. Without input data covering some
HDs, some predicted HDs may never be achieved (see Figure 2).
Both Vector Reconstruction and Optimal Linear Estimator
methods are more sensitive than other approaches to violations
of these criteria.

In general, the machine-learning methods displayed similar
decoding accuracy to 4 of the model-based methods (Kalman
Filter, Generalized Linear Models, Wiener Filter, Wiener
Cascade). This indicates that the relationship between neural
firing and HD is well captured by the 4 methods and
do not differ from more complicated networks, which may
have the problem of over-fitting the data. While it is
possible that machine-learning methods would provide a
benefit when dealing with larger scale recordings and high
dimensional inputs, a large advantage of the model-based
methods is their efficiency and robustness. All parameters
can be efficiently estimated, and the linear methods can
even have closed-form estimation. Related to these points,
we also compared decoding accuracy with the elapsed time
of training and testing decoding methods (time cost). All
methods, with the exception of Vector Reconstruction and
Optimal Linear Estimator, did not significantly differ with
respect to MAE. However, the time cost was much greater
for machine learning methods. This finding is not entirely
surprising given the fact that machine learning methods
include several parameters to be optimized and require
Bayesian Optimization to tune the hyper-parameters. Thus,
these features likely multiply the time cost of machine
learning approaches. In sum, when considering the trade-
off between accuracy and time, Kalman Filter, Generalized
Linear Models, Wiener Filter and Wiener Cascade would be
preferred methods for neural decoding of HD. Thus, for the
datasets in the present study, machine-learning methods do
not result in a better decoding and cost more with greater
computation time.

We also contrasted the accuracy of HD cell decoding
between 5 brain regions, including ATN, PoS, PaS, MEC,
and PC. From these comparisons, we found that decoding
performance varied considerably across datasets and brain
regions (see Figure 9 and Supplementary Material S15.3).
Specifically, decoding accuracy was greater for ATN when
compared to parahippocampal cortex (PoS, MEC, PaS). Our
initial analyses indicated that decoding accuracy was weakest
for PC units. However, after controlling for the numbers

of cells, our analyses indicated that decoding accuracy was
similar across parahippocampal regions and PC, and for some
decoding methods, was weaker for MEC populations. Our
observations are consistent with a previous report suggesting
greater decoding accuracy by ATN HD cell populations
compared to PoS HD ensembles (see Supplementary Figure S1
in Viejo et al., 2018).

Greater decoding accuracy by ATN populations support
the hypothesis that the ATN has a pivotal role in processing
the HD cell signal (Cullen and Taube, 2017). Notably,
damage to the ATN is known to disrupt HD signals in the
parahippocampal cortex (Goodridge and Taube, 1997; Winter
et al., 2015a); thus, a high precision readout of ATN HD
signals may be critical for “downstream” networks (Wilber
et al., 2014, 2015; Peyrache et al., 2015). HD cells in the ATN
express some unique firing characteristics that may provide
an advantage for neural decoding. For instance, previous
studies have reported that HD cells in the ATN have higher
peak firing rates compared to the PoS (Blair and Sharp,
1995; Taube and Muller, 1998; Peyrache et al., 2015) which,
as described in the present study, has a significant impact
on decoding accuracy. In addition, HD cells in the ATN
can exhibit anticipatory firing characteristics, which can also
influence the accuracy of HD decoding. Specifically, during a
given head movement, ATN HD cells tend to fire maximally
∼25 ms before the animal’s head reaches the cell’s preferred
firing direction (Blair and Sharp, 1995; Taube and Muller,
1998). A recent study by Zirkelbach et al. (2019) determined
that anticipatory firing can improve decoding of the animals
current HD by compensating for sensory or motion-induced
decoding errors. In contrast to the ATN, experimental work
has found that anticipatory firing is limited in the PoS
(Taube and Muller, 1998). In PC, anticipatory firing has been
reported by HD cells for action anticipation but not HD
anticipation and the timescale of this anticipatory firing varies
(Wilber et al., 2014). Anticipatory firing by HD cells in other
regions of the parahippocampal cortex has not been well
characterized (Winter et al., 2015b). Thus, it is possible that
anticipatory firing by HD cells may have a critical influence
over decoding accuracy across the entire HD cell circuit. Future
studies should provide a quantitative comparison of these
features of HD cell firing across thalamo-parahippocampal and
cortical regions.

We considered several variables that may have contributed
to the observed regional differences in decoding accuracy.
These included the population firing rate (response rate),
tuning strength, and cell density. Our analyses found that
measures of tuning strength and cell density were significantly
related to MAE. Notably, differences in the tuning strength
of individual cells was the strongest predictor. The number
of HD cells was the next strongest predictor and the overall
response rate was comparatively the weakest predictor
of decoding accuracy. However, all three methods were
still significantly predictive of decoding accuracy. Thus,
variance in MAE may be a consequence of differences
in recording location, spike counts, tuning strength and
HD cell density.
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In summary, the present study suggests three general
conclusions regarding the use of statistical model-based and
machine learning approaches for neural decoding of HD: first,
our comparison of different computational models suggests
limitations in decoding accuracy by Vector Reconstruction and
Optimal Linear Estimator methods. Second, we found that
decoding accuracy is variable across the HD cell system, with
superior decoding in ATN compared to parahippocampal and
cortical regions. Last, we found that decoding accuracy can be
influenced by variables such as tuning strength, the response
rate, and the recording density of HD cells. Thus, the present
study provides a framework for the use of these computational
approaches for future investigation of the neural basis of
spatial orientation.
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