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Abstract

Designing protein sequences that fold to a given three-dimensional (3D) structure

has long been a challenging problem in computational structural biology with signifi-

cant theoretical and practical implications. In this study, we first formulated this prob-

lem as predicting the residue type given the 3D structural environment around the

Cα atom of a residue, which is repeated for each residue of a protein. We designed a

nine-layer 3D deep convolutional neural network (CNN) that takes as input a gridded

box with the atomic coordinates and types around a residue. Several CNN layers

were designed to capture structure information at different scales, such as bond

lengths, bond angles, torsion angles, and secondary structures. Trained on a very

large number of protein structures, the method, called ProDCoNN (protein design

with CNN), achieved state-of-the-art performance when tested on large numbers of

test proteins and benchmark datasets.
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1 | INTRODUCTION

As “machines of life,” proteins play crucial roles in almost all cellular

processes, such as transcription, translation, signaling, and cell cycle

control. Computational protein design (CPD) is a technique by which

proteins are computationally designed for specific structure and/or

functions. Significant progress in CPD has been made in the past few

decades1 such as enzymes design2-8 and membrane protein

design.9,10 There are several different sub-problems in CPD. The

inverse protein folding (IPF) problem, which was raised in 1983 by

Pabo,11 is the problem of finding the amino acid sequences that fold

into a known three-dimensional (3D) structure. Solving this problem

will improve our fundamental understanding of the sequence-

structure relationship of proteins. Another problem with wide applica-

tions is to design proteins with new functions, such as enzyme

design.3,4,7,12 The design will usually start from a known structure,

which will be kept in the process, and modify part of the sequence to

achieve a new function. Variations of the problem include specificity

design and affinity design, where the functions of designed proteins

are not new, but some properties of functions are the target of CPD.

The third type of CPD is to change the chemical or physical properties

of the proteins, such as improvements in the stability of the designed

proteins.13 Increasing the thermostability of enzymes can be very use-

ful in manufacturing industry, where enzymes are used for production

of chemicals.

In this study we tackle mainly the first problem: designing protein

sequences that fold to a known 3D structure—the IPF problem. A var-

iation of our model can also be used to predict single residue muta-

tions that stabilize a given protein structure.

There have been some remarkable successes in IPF in the past. In

1997, Stephen Mayo and coworkers successfully designed the first

protein completely de novo.14 In 1995, Desjarlais and Handel

designed a computational framework for the de novo design of hydro-

phobic cores.15 Raha and coworkers developed the sequence
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prediction algorithm (SPA) in 2000 to design protein sequences that

can fold to a given 3D backbone structure.16 The agreement between

the predicted sequences and the native sequence of each backbone

template ranges from 24% to 28% on four protein superfamily motifs:

SH3 domain, the homeodomain (HM), the fibronectin type III (FNIII)

domain, and the RNA recognition motif (RRM). In 2000, Kuhlman and

Baker introduced RosettaDesign17 to identify low energy amino acid

sequences for target protein structures. Later in 2003, it was used to

redesign nine naturally occurring proteins, and the redesigned

sequences were on average 35% identical to the wild-type

sequence.18 Hu and coworkers developed a nonlinear scoring func-

tion for selecting sequences comparable with a given structure.19

Most of the above methods used energy-based method, which starts

with random protein sequences and iteratively optimizes an energy

function via mutations until the energy score reaches a minimum.

Another approach is using local fragment structures from a target

structure, which is compared to the fragment library of known protein

structures.20-22 In 2010, Liang Dai et al introduced RosettaDesign-SR,

which uses a sequence profile derived from the sequences of five resi-

due fragments in a fragment library.23 The average sequence identity

compare to wild-type sequence is 35% over 100 sequences designed

for each protein for 33 training proteins.

Calculating the sequence identity to the wild-type (or native)

sequence (also called recovery rate of the native sequence for a given

structure) is a common assessment method for the designed

sequences.17,24 The average sequence recovery rates achieved by the

current top-performing protein-design programs are around 35% on a

small number of proteins. For the latest review articles on CPD and

IPF problem see References 1, 25, 26.

The number of protein sequences and structures in the Protein Data

Bank (PDB) has grown significantly in recent years. As of November 2018,

the PDB27,28 contains 135 685 protein structures. The increase of data

allows more complex models to be built for protein design. In the past

decade, research in deep neural networks (DNNs or deep learning

methods) has made very rapid progress and provided the best solutions to

many problems such as image recognition,29-32 speech recognition,33-37

and natural language processing38-42 by training complexmodels using very

large volumes of training data. Unlike conventional machine learning tech-

niques that require a feature extraction step to transform the raw data into

a suitable representation as the input, DNNs allow raw data to be fed

directly to a network with certain architecture.29,43,44 In deep learning,

more efforts aremade in selecting the type of DNNs and designing specific

architecture for the selected DNN framework. In the past few years, deep

learning has seen its applications in computational studies of protein struc-

tures, such as protein secondary structure prediction,45-49 protein contact

map prediction,50-53 and protein–protein interaction prediction.54-56

DNNs have also been used for protein design. In 2014, Zhou and

co-workers developed SPIN (sequence profiles by integrated neural net-

work) based on fragment-derived sequence profiles and structure-

derived energy profiles.54,55,57 Both local and nonlocal features were

designed and served as input for a two hidden layer neural network,

which contained 51 hidden neurons and one bias. SPIN yielded an aver-

age sequence recovery of 30.7% for a dataset with 1532 proteins. Later

in 2018, SPINwas upgraded to SPIN2 with more local features including

two more backbone angles as well as more nonlocal features such as

contact numbers.58 This network included three hidden layers with

500 sigmoid nodes each. The output layer had 20 SoftMax nodes rep-

resenting the 20 types of amino acid residues. SPIN2 achieved an aver-

age sequence recovery of 34.4% for the dataset with 1532 proteins.

Another study adopting a DNN for protein design, conducted by Wang

et al in 2018,59 used structure features as input, such as cosine and sine

values of backbone dihedrals, the total solvent accessible surface area of

backbone atoms, atom distances, number of hydrogen bonds and sec-

ondary structures. A multilayer neural network was constructed includ-

ing a residue probability network and a weight-network followed by

several fully-connected layers, and a 20-dimensional SoftMax layer is

used as the final output. In this study, the best recovery rate was 34% on

a dataset with 10 173 proteins (30% sequence identity), and 38.3% on a

dataset with 17 607 proteins (90% sequence identity).

Among all the deep learning frameworks, convolutional neural net-

work (CNN)60-62 has been widely used, especially for object recognition.

The IPF problem can be formulated as a 3D object recognition problem:

predicting the residue type given the 3D environment—the backbone

structure of proteins. The key structure information determining the

residue type at a particular position on a given protein structure is likely

the atoms surrounding this residue, as shown in Figure 1A. We used a

gridded box centered on the residue to get the local 3D environment

information, which consists of the coordinates and types of all the

atoms in the box. Now the problem becomes predicting the residue

type given a point cloud—coordinates and types of all the atoms in the

box (called the Box). To that end, we designed a CNN architecture

including three parallel layers which are used to capture local protein

structure features, such as bonds, angles, and dihedral angles, followed

by another layer recognizing the secondary structure of the proteins

(Figure 1B). The Box also contains atom-atom contact information natu-

rally. Instead of extracting structural features as other studies did, we

fed the Box directly to the CNN to learn all the parameters in the CNN

model for residue type prediction. We used a sliding window going

through the sequence and predicted each residue type one-by-one.

Compared with SPIN and Wang et al's model (Wang's model), our

method, called ProDCoNN (Protein Design using CNNs), has achieved

substantially improved performance (see Section 3 for details).

2 | MATERIALS AND METHODS

Our method tackles protein design problem by predicting one residue,

called target residue, at a time using the local structural information

surrounding the target residue. We use a gridded box centered on the

target residue to capture the local structural information around it, as

shown in Figure 1. The cubic box of edge length 18 Å is centered on

the Cα atom of the target residue. The box is gridded with each voxel

being unit size (1 Å × 1 Å × 1 Å). With this resolution (each box has

5832 voxels), most of the voxels contains no more than one heavy

atom. For each target residue, the protein is rotated to make its Cα─C

bond lying along the x-axis, and its Cα─N bond lying on the x-y plane.
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Each atom type is represented by a different channel (analogous to

RGB color channels in images). With N types of heavy atoms, the

dimension of input data is 18 × 18 × 18 × N. If an atom is only repre-

sented by the voxel it occupies, the exact coordinate information of

the atom is lost. To overcome this limitation caused by the dis-

cretization of the 3D space around the target residue, we smooth the

input data using3D truncatedGaussian functionswithSD σx= σy= σz= r,

where r is the Van der Waals radius of the atom in a given voxel. The

values for the radius are 0.7, 0.65, and 0.6 Å for carbon, nitrogen, and

oxygen, respectively. Each heavy atom is represented by a Gaussian

function, whose density is spread over the voxel the atom occupies

and the 26 adjacent voxels. The exact densities in each voxel are

dependent on the coordinate of the atom. All the side chain atoms are

removed from the input data.

In addition to keeping all the backbone atoms (C, Cα, N, and O)

and the extra oxygen atom OXT on the terminal carboxyl group, we

also added a pseudo-Cβ atom to each residue including GLY. The Cβ

atom at residue i has bond length for Cα
i─Cβ

i bond as 1.521 Å, bond

angle Ni─Ci─Cα
i as 110.4� and dihedral angle Ni─Ci─Cα

i─Cβ
i as

122.55�. We trained two models for different applications: Back-

bone only model (BBO) takes protein backbone conformation infor-

mation as input which is suitable for full sequence prediction

beginning with backbone structures only. Six input channels, which

correspond to atoms C, Cα, N, O, OXT, and Cβ have been used for

this model. Backbone with sequence model (BBS) takes backbone

information plus Cβ atoms of nontarget residues labeled as one of

the 20 amino acid types based on the sequence information.

Twenty-six input channels, which correspond to atoms C, Cα, N, O,

OXT, and Cβ of target residue and 20 types of Cβ (nontarget resi-

due), have been used for BBS model. This model requires sequence

information except target residue, which is suitable for predicting a

single residue given the backbone structure and the amino acid

types of the rest of the sequence.

The sequence recovery rates by our models trained on a dataset

with 8120 protein chains are 42.20% for the BBO model (see

Section 3 for details) and 47.63% for the BBS model. The recovery

rates of the BBO and BBS models trained on another dataset with

17 040 protein chains are 46.50% and 52.15%, respectively.

F IGURE 1 Architecture of neural network. A, Left: snapshot of the gridded box that captures the environment atoms to predict the amino acid
type (red). Right: visualization of atoms (blue) captured by the boxwhich used as input to CNN sequence prediction. BBOmodel uses the backbone
atoms (C, Cα, N, O, and the extra oxygen atomOXT on the terminal carboxyl group) and pseudo-Cβ atomwhich addedmanually with the bond length of
Cα─Cβ as 1.521 Å, bond angleN─C─Cα as 110.4� and dihedral angleN─C─Cα─Cβ as 122.55�. BBSmodel uses the same atom set but label Cβ (green)
on nontarget residues differently based on the residue types in the protein sequence. B, The architecture of the designed deepNeural Network. The
input consists of N (Nchannel) set of 18× 18× 18 gridded boxes, and each channel represents the occupation of one type of atom
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2.1 | Datasets

We chose 10 149 protein structures (ID30) with the sequence's identity

lower than 30% from PDB.28 All the structures are determined by X-ray

crystallography with the resolution better than 2.0 Å and do not have

any DNA/RNA/UNK molecules. We randomly picked 90% protein

chains (9135 protein chains) as training data (ID30TR), and the rest 10%

(1014 protein chains) as test data (ID30TS). Another 50 protein chains

(TS50) which are not included in the above dataset are used to test the

models and compare with other methods. These 50 protein chains (pdb

name + chain) are 1ahsA, 1bvyF, 1pdoA, 2va0A, 3ieyB, 2xr6A, 3ii2A,

1or4A, 2qdlA, 3nzmA, 3vjzA, 1eteA, 2a2lA, 2fvvA, 3l4rA, 1lpbA, 3nngA,

2cviA, 3gknA, 2j49A, 3fhkA, 3pivA, 3lqcA, 3gfsA, 3e8mA, 1dx5I, 3ny7A,

3k7pA, 2cayA, 1i8nA, 1v7mV, 1h4aX, 3t5gB, 3q4oA, 3a4rA, 2i39A,

3aqgA, 3ejfA, 3nbkA, 4gcnA, 2xdgA, 3gwiA, 3hklA, 3so6A, 3on9A,

4dkcA, 2gu3A, 2xcjA, 1y1lA, and 1mr1C. They were previously used by

SPIN andWang et al's model to comparewith othermethods.

We also generated another dataset ID90, which includes 21 071

protein structures from PDB with sequence identity lower than 90%.

All the structures are determined by X-ray crystallography with the

resolution better than 2.0 Å and do not have any DNA/RNA/UNK

molecules. We used 17 044 protein structures as training data

(ID90TR), and the rest 4027 protein structures as test data (ID90TS).

The sequence identity of the structures between ID90TR and ID90TS

are lower than 30% if the length difference ≤20%. The dataset TS50

is excluded from ID90TR. The BBO and BBS models trained on

ID30TR are labeled as BBO_ID30 and BBS_ID30, and the ones trained

on ID90TR are labeled as BBO_ID90 and BBS_ID90, respectively.

2.2 | Network architecture

As shown in Figure 1B, our CNN architecture has totally nine layers,

which are described in detail as follows:

1. The input layer with dimension 18 × 18 × 18 × Nchannel. Nchannel is

the number of atom types.

2. Three parallel 3D convolution layers (conv3D) with rectified lin-

ear unit (ReLU) activation function. The first of those conv3D

layers applies 16 channels of 2 × 2 × 2 convolutional filters

(2 × 2 × 2 × Nchannel × 16) across the input with a stride as

one to generate an output feature map with the same dimen-

sion as the input. This layer was designed to capture the infor-

mation of covalent bonds, whose lengths range between 1.2

and 1.8 Å). The second conv3D layer applies 32 channels of

3 × 3 × 3 convolutional filters (3 × 3 × 3 × Nchannel × 32) with

a stride as one, which was designed to recognize bond angles

formed by two connected bonds. The last conv3D layer applies

32 channels of 4 × 4 × 4 convolutional filters (4 × 4 ×

4 × Nchannel × 32) with a stride as one, which was aimed to

capture information on dihedral angles.

3. All the outputs in layer 2 are combined (18 × 18 × 18 × 80) and

fed into a 2 × 2 × 2 max pooling unit to get an output of dimension

9 × 9 × 9 × 80. Due to the max pooling process, the grid resolution

changes to 2 Å.

4. A conv3D layer with 64 channels of 3 × 3 × 3 filter is added

to detect secondary structure motifs such as alpha helices and

beta sheets.

5. A max pooling layer (3 × 3 × 3) is applied to get an output of (3 ×

3 × 3 × 64).

6. A flatten layer to convert the output of layer 5 to a simple vector.

7. A fully connected layer with ReLU activation function.

8. A dropout layer with a drop rate of 0.2.

9. A 20-dimensional SoftMax activation layer as the final output,

which can be interpreted as the probability of 20 amino acid types

of the target residue.

The neural network is constructed using the Keras library.18

We used the rectified linear unit (ReLU) as the activation function

TABLE 1 The average recovery rate
(%) and fuzzy recovery rate (%) based on
BLOSUM62 of different neural network
models (BBO, BBS) trained with dataset
ID30TR and ID90TR and test on dataset
ID30TS (for ID30 models), ID90TS (for
ID90 models), and TS50

Model BBO_ID30 BBO_ID90 BBS_ID30 BBS_ID90

Overall recovery rate 42.20% 46.50% 47.63% 52.15%

Fuzzy recovery rate 61.43% 64.90% 65.79% 69.53%

Recovery rate on TS50 38.71% 40.69% 43.20% 45.58%

Fuzzy recovery rate on TS50 58.81% 59.91% 62.15% 64.33%

TABLE 2 The average recovery rate
of different models

Model BBO_ID30 BBO_ID90 Wang's model SPIN SPIN2

Overall recovery rate 42.20% 46.50% 34.0% 30.7% 34.4%

Recovery rate on TS50 38.71% 40.69% 33.0% 30.3% NA

Note: The overall recovery rates of our models, BBO_ID30 and BBO_ID90, tested on the dataset ID30TS

(237 000 amino acid residues) and ID90TS (990 469 amino acid residues). The recovery rate of Wang

et al's model is from fivefold cross-validation trained on a dataset consisting of 10 173 protein chains

with sequence identity lower than 30%. The overall recovery rate of SPIN and SPIN2 is from 10-fold

cross-validation trained on a dataset consisting of 1532 nonredundant proteins. These models are also

tested on a small test dataset TS50 (50 protein chains) except SPIN2 which is tested on a dataset

consisting of 500 protein chains including TS50.
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for all layers except the output layer where we use SoftMax acti-

vation function. We used the categorical cross-entropy as the loss

function and Adam for optimization. We trained our model for

7, 12, 7, 13 epochs for model BBO_ID30, BBO_ID90, BBS_ID30,

and BBS_ID90, respectively, with a batch size of 200 and a learn-

ing rate of 0.01. We used batch normalization to reduce the inter-

nal covariate shift and dropout (drop rate = 0.2) to reduce

overfitting in the neural network.

3 | RESULTS

3.1 | Overall recovery rate

The average overall recovery rates of different models are shown in

Table 1. The overall recovery rate is defined as the percent of amino

acid residues that are predicted the same as the native sequence for a

given protein structure. The BBS model trained on ID90TR has the

best performance with 52.15% recovery rate on the test dataset

ID90TS, and the BBS model trained on ID30TR has 47.63% recovery

rate on ID30TS. The model trained on ID90TR increases the perfor-

mance by more than 4%, indicating that the performance may be

improved even further with more training data. Even though the

sequence identity in ID90 data set is much higher than ID30, but we

split the training data and test data to make sure that the sequence

identity is lower than 30% between training and test dataset. So, the

improvement comes mainly from the increased training data size

(17 044 protein chains), which is nearly doubled compared to that of

ID30TR (9135 protein chains).

We test all the models with the data set TS50 which is excluded

from all the training data sets ID30TR and ID90TR. The recovery rates

for BBO models are 40.69% and 38.71%, when trained on ID90TR

and ID30TR, respectively. The performance of our method compares

favorably to those of previous studies (Table 2). The average recovery

rate on TS50 by Wang et al's model, trained on a dataset with

sequence identity less than 30%, is 33.0%; The average recovery rates

for SPIN and SPIN2 are 30.2% and 34.4%, respectively, on a 500 pro-

teins dataset which contains TS50.

We also calculate a fuzzy recovery rate which is defined as the

percent of amino acid residues that are predicted the same as the

native residue types or as a substitutable residue type corresponding

to BLOSUM62 (scores from the matrix are positive).63 The fuzzy

recovery rates for BBO models are 64.90% (BBO_ID90) and 61.43%

(BBO_ID30), when trained on ID90TR and ID30TR, respectively, for

BBS models are 69.53% (BBS_ID90) and 65.79% (BBS_ID30).
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3.2 | Accuracy on different amino acid types

Figures 2 and S1 show the distribution of each amino acid type in

training data ID90TR and ID30TR, as well as the precision, recall, and

F1 score of BBO and BBS models trained on these datasets. Precision

is the percent of prediction that is correct, and recall is the percent of

native residue that has been correctly predicted. There are large varia-

tions on the precisions and recalls among different amino acids types

F IGURE 4 Sequence prediction by BBO_ID30 (BBO30), BBO_ID90 (BBO90), BBS_ID30 (BBS30), and BBS_ID90 (BBS90) model on human
hemoglobin protein 1a3nA compared with true wild-type sequence (red). The amino acids shown below the true label row are alternative amino
acids at the corresponding position based on the sequences which are similar (P-value = 0, twist = 0) with 1a3nA calculated by FATCAT.65 An orange
background indicates exactly correct prediction, and a blue background indicates that the predictionmatches one of the alternative amino acids
[Color figure can be viewed at wileyonlinelibrary.com]
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with GLY and PRO having the best accuracy for both models, and

GLN and MET having the worst accuracy.

3.3 | Top-K recovery rate

Since the last layer of our model outputs the probability of each amino

acid, we could calculate the top-K recovery rate, where the prediction

is considered as correct if the native residue type is within the top-K

predictions based on the probabilities. As shown in Figure 3, the best

performance is achieved by BBS_ID90 model, which gives the top-2,

3, 5, 10 recovery rates as 67.89%, 75.99%, 85.27%, and 95.60%,

respectively. The BBO_ID30 yield top 2, 3, 5, 10 recovery rates as

58.12%, 67.57%, 79.07%, and 93.11%, respectively. The BBO_ID90

yields top 2, 3, 5, 10 recovery rates as 62.23%, 71.13%, 81.79%, and

94.32%, respectively. The fact that the top-10 predictions of our

TABLE 3 Case study
Model BBO_ID30 BBO_ID90 BBS_ID30 BBS_ID90

1a3nA recovery rate 38.30% 45.39% 46.10% 58.16%

1a3nA soft recovery rate 81.56% 83.69% 82.98% 86.52%

1a3nB recovery rate 38.62% 51.72% 44.14% 62.76%

1a3nB soft recovery rate 78.62% 86.21% 80.00% 90.03%

Note: The recovery rate (%) and soft recovery rate (%) of the predicted sequences of deoxy human

hemoglobin (pdb id: 1a3n, chain A and B) by different models.

F IGURE 5 Confusion Matrix of BBO_ID90. The y-axis represents true labels and x-axis indicates predicted labels. The number in each entry
indicates the number of times each amino acid was predicted as one of the 20 amino acids and the color shows the corresponding probability
[Color figure can be viewed at wileyonlinelibrary.com]
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models can reach well above 90% indicates that our models can sepa-

rate very well those residues that may fit for a particular position in a

structure and those residues that fit poorly for that position. We also

calculate the top-K recovery rate of all the models on TS50 dataset,

and the best BBO model (BBO_ID90) reaches 40.69%, 56.11%,

65.09%, 76.87%, and 92.41% for top-1, 2, 3, 5, 10 recovery rates,

respectively. Comparing with SPIN and Wang et al's model, which

give (30.2%, 45.3%, 55.2%, 67.7%, and 86.8%) and (33.0%, 48.7%,

58.5%, 71.7%, and 86.8%) for top-1, 2, 3, 5, 10 recovery rates, our

model made substantial improvements than SPIN and Wang et al's

model.

3.4 | Soft sequence recovery accommodating
homologous sequences: a case study on deoxy human
hemoglobin

It is well-known that proteins can undergo substantial mutations while

maintaining their 3D structures and stabilities. If we make mutated

proteins using predicted sequences not exactly the same as native

sequences, the mutants may still fold to 3D structures similar to the

input structure. In such cases, the predictions may still be considered

as satisfactory. We used BBO_ID90 model to predict the protein

sequences of deoxy human hemoglobin (pdb id: 1a3n, chain A and B),

and obtained the recovery rate of 45.39% and 51.72% for 1a3nA and

1a3nB, respectively. Although it has been suggested that native

sequences are optimal for their structures,64 highly similar structures

can still have significantly different sequences. We use FATCAT

(Flexible structure AlignmenT by Chaining Aligned fragment pairs all-

owing Twists)17 server to get all the sequences (77 protein chains for

1a3nA and 77 protein chains for 1a3nB) whose corresponding struc-

tures are similar to 1a3nA and 1a3nB using cutoff values of 0 for both

P-value (very small P-values are rounded to zero) and twist. As shown

in Figure 4 and Figure S2, the amino acid types that occur in at least

one sequence (AA-homologous) is listed below the native sequence

(red) of 1a3n for each position, and the predicted sequences by

models BBO_ID30 (BBO30), BBO_ID90 (BBO90), BBS_ID30 (BBS30),

and BBS_ID90 (BBS90) are shown above the native sequence. An

orange background indicates exactly correct prediction, and a blue

background indicates that the predictions fall into the AA-homologous

set. We define the soft recovery rate as the proportion of predictions

that fall into either native sequence or the AA-homologous set. The

results are shown in Table 3, our BBO_ID90 model yields an 83.69%

and 86.21% soft recovery rates for 1a3nA and 1a3nB, respectively,

which are significantly higher than the sequence recovery rates

(45.39% and 51.72%) without taking into account of homologous

sequences.

3.5 | Confusion matrix

We plotted confusion matrix for BBO_ID90, BBO_ID30, BBS_ID30 and

BBS_ID90models in Figures 5, S3, S4, and S5, respectively. A cell (x, y) in

the confusion matrix shows the number of times residue type x are

predicted to be residue type y. Figure 6 shows a modified-confusion

matrix for BBO_ID90 besides with BLOSUM62. In addition, the ones for

BBO_ID30, BBS_ID30, and BBS_ID90 are shown in Figures S6-S8,

respectively. The method of generating the modified-confusion matrices

is given in Supporting Information. The two confusionmatrices are highly

similar with a P-value = 0when tested using permutation test.

F IGURE 6 Modified confusion matrix for model BBO_ID90 (right) compared with BLOSUM62 (left). The two matrices are very similar
(P-value = 0 from permutation test) [Color figure can be viewed at wileyonlinelibrary.com]
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4 | CONCLUSIONS AND DISCUSSIONS

In this study, we developed a CNN model to address the inverse folding

problem (IFP)—inferring the sequence of a protein given its 3D structure.

Our method, called ProDCoNN (Protein Design with CNNs), achieved

superior performance compared to those of earlier studies (Table 2).

Unlike the protein folding problem, the solution to IFP is not

unique and the best solution is probably unknown. The native

sequence is probably just one of the better solutions. Although it has

been suggested that native sequences are likely optimal for a given

structure,65 the fact that many proteins can be engineered to more

stable mutants66-68 indicates that in terms of stability, many protein

sequences are not optimal. The uncertainty on the optimal solution

makes the evaluation of methods for IFP quite challenging. Given this

uncertainty, we performed more in-depth analyses to gain more

insight on the real performance and a better understanding of the

strengths and weaknesses of our method as well.

The top-K recovery rates for BBO_ID90 model increase sharply

from K = 1 to K = 2 and continues until K = 5, for which the recovery

rate is above 80% (Figure 3). It is well-known that proteins can toler-

ate mutations on most of their sequence positions (see Figure 4 for an

example). If the top-5 predictions correspond to those mutations that

will not affect the protein stability significantly, then our effective

sequence recover rate would be more than 80%. In most cases, resi-

dues similar in physical or chemical properties to the native ones are

selected as the top-K predictions. This is further shown from the case

study on deoxy human hemoglobin (Figure 4). The soft recovery rate,

when homologous sequences were considered, can reach more than

80%. We hypothesized that a decent number of our predictions,

although differing from the native sequences, may stabilize the given

structure similarly or even more than the native sequences.

To further investigate whether some of our wrong predictions

may actually be compatible with the native structures, we plotted

confusion matrix for BBO_ID90 model in Figure 5. From this figure,

we can see that the model made significant errors on distinguishing

similar residues. For example, the cells corresponding to valine (VAL)

and isoleucine (ILE) are the two residues with the highest number of

errors, followed by GLU vs LYS and ALA vs SER. The errors made are

not symmetric in that there are more ILE predicted as VAL than VAL

predicted as ILE. Investigation of these errors may help us design bet-

ter models to further improve the performance.

Interestingly, the confusion matrix (Figure 6 right) displays signifi-

cant similarity (P-value = 0 using permutation test) with the well-

known amino acid substation matrices (ie, BLOSUM62 matrix,

Figure 6 left). This indicates that our models likely perform better than

what they appeared using the stringent criterion of predicting the

exact native amino acid types.

Our models have a relatively poor performance on residues with

low abundance compared to other amino acid residue types, such as

methionine (MET) and tryptophan (TRP). The proportion of MET is

1.7% in ID30TR. As the number of MET in training data ID90TR (the

proportion is the same) increases, the precision and recall by

BBO_ID90 model increased significantly (Figures 2 and 7). We believe

that with more data available in the future, the performance of our

models can still be improved by simply training with more data.
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