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A B S T R A C T   

Background: The dynamic time warping (DTW) has recently been introduced to analyze neural signals such as 
EEG and fMRI where phase variability plays an important role in the data. 
New method: In this study, we propose to adopt a more powerful method, referred to as the Fisher-Rao Regis-
tration (FRR), to study the phase variability. 
Comparison with existing methods: We systematically compare FRR with DTW in three aspects: (1) basic frame-
work, (2) mathematical properties, and (3) computational efficiency. 
Results: We show that FRR has superior performance in all these aspects and the advantages are well illustrated 
with simulation examples. 
Conclusions: We then apply the FRR method to two real experimental recordings – one fMRI and one EEG data 
set. It is found the FRR method properly removes the phase variability in each set. Finally, we use the FRR 
framework to examine brain networks in these two data sets and the result demonstrates the effectiveness of the 
new method.   

1. Introduction 

Temporal phase lags have been commonly observed in neural signal 
recordings (Vinck et al., 2011; Williams et al., 2020). These lags may be 
introduced by the dynamic switching of brain states and exhibit linear or 
non-linear patterns across the time domain (Allen et al., 2014; Chen 
et al., 2015). To make meaningful inference on the recordings, it is often 
a prerequisite to measure and remove those phase lags. For example, the 
study of functional connectivity focuses on identifying statistical in-
terdependencies between time series recording from different brain 
areas (Friston et al., 1997; Tononi et al., 1998). One major goal is usually 
to quantify the strength of phase synchronization, which constitutes a 
significant physiological mechanism for functional integration (Singer 
and Gray, 1995; Fries, 2005; Singer, 1999; Varela et al., 2001). Various 
mathematical measures, such as phase-locking statistics (Lachaux et al., 
1999), mutual information (Hurtado, 2004), and partial directed 
coherence (Kamiński et al., 2001), have been applied to quantify the 
synchronization. However, all these methods have clear limitations. For 
example, the phase-locking statistics is used to detect stationary, 
non-zero phase lags between two signals, whereas phase differences 
between different brain areas may vary dynamically, even with a single 

strong source. Similar limitation happens for the partial directed 
coherence method which is only appropriate for stationary and linear 
models. 

In general, neurophysiological recordings often suffer from delay- 
induced bias. This includes those with high temporal resolutions such 
as electroencephalogram (EEG) and magnetoencephalography (MEG), 
and those with high spatial resolutions such as functional magnetic 
resonance imaging (fMRI). Indeed, small hemodynamic response delays 
or slice-timing differences may cause mismatches of data. To estimate 
the temporal latency, conventional approaches assume the delay- 
induced bias is stationary and shift signal curves within time scales of 
seconds to minutes. The estimated temporal delay is the time shift when 
strongest statistical interdependencies are obtained (Mørup et al., 2008). 
An increasing number of studies on fMRI (Chang and Glover, 2010; 
Sakoğlu et al., 2010; Kiviniemi et al., 2011; Handwerker et al., 2012; 
Jones et al., 2012; Smith, 2012; Allen et al., 2014), near-infrared spec-
troscopic and MEG (de Pasquale et al., 2010; Brookes et al., 2011; 
Keilholz, 2014; Li et al., 2015) indicate that functional connectivity 
reveals dynamic changes in human cognition process. 

To capture a high-quality dynamic temporal-lag structure, various 
conventional approaches such as sliding-window analysis, wavelet 
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transform coherence, and spontaneous co-activation patterns analysis, 
have been introduced to deal with this problem (Liu and Duyn, 2013; 
Chen et al., 2015). Traditional statistical methods such as linear and 
piecewise-linear models are also exploited (Williams et al., 2020). In 
particular, the dynamic time warping (DTW), a classical algorithm for 
measuring similarity between two temporal sequences (Sakoe and 
Chiba, 1978), has been a preferred method in recent studies of alignment 
on neural signals such as EEG (Huang and Jansen, 1985; Gupta et al., 
1996; Karamzadeh et al., 2013), fMRI (Dinov et al., 2016; Meszlényi 
et al., 2017), and neuronal spike trains (Lawlor et al., 2018). Such 
temporal warping method offers a novel and enchanting insight to deal 
with common temporal-lag problems. The key idea in DTW is to perform 
a dynamic time warping on discrete sequence data to correct the 
non-stationary time lags. This method is immune to the common noise 
components in the data and can provide accurate estimate of the un-
derlying templates such as the hemodynamic response functions 
(Meszlényi et al., 2017). Indeed, it has become one of the most 
commonly used tools for handling phase synchronization problems. 

Nonetheless, the DTW method has apparent disadvantages: (1) It is a 
matching method between two sequences of temporal points. The 
matching process on points are not one-to-one, and therefore the 
sequence lengths change after the alignment (cannot be pre-determined 
beforehand). (2) The matching does not preserve feature in the given 
sequences and often leads to the pinching effect problem (Srivastava 
et al., 2011). (3) DTW is not a metric-based method, and can only do 
pairwise comparison. There is no principled way to conduct further 
statistical analysis (e.g. no notion of mean or covariance). (4) There is 
only pairwise comparison in the DTW method. It is very inefficient to use 
the method in practice. (5) Last but not least, DTW measures the dis-
tance after the phase-lag is removed, and therefore this distance can be 
referred to as “amplitude distance”. However, the method does not 
provide a measurement on how much warping is done. That is, it does 
not provide a measurement on the “phase distance” between two sig-
nals. The detailed discussion of these disadvantages is given in Section 
2.3. 

To overcome these problems in DTW, we propose to adopt a new 
framework, referred to as Fisher-Rao registration (FRR), to deal with the 
dynamic latency between signals. Treating signals as functions on a 
given time domain, FRR (Srivastava et al., 2011) offers a unified, 
comprehensive solution to conduct alignment (or registration) between 
two functions. Similar to DTW, the alignment in FRR is done with the 
notion of time warping, albeit as a continuous operation within the 
given domain. Any strictly increasing, nonlinear warping trans-
formation is taken into account in this fixed domain. More importantly, 
FRR is a metric-based method, and can naturally introduce the notion of 
mean and covariance on the given signals and produce more powerful 
statistical analysis. It can also provide both “amplitude distance” and 
”phase distance” between two signals. We will provide a systematical 
comparison between FRR and DTW and demonstrate the superiority of 
FRR in this paper. We expect the FRR framework will turn out to be a 
useful method for neural signal processing where phase variability is a 
significant factor. The computational analysis in this study was imple-
mented using Matlab (The Mathworks, Inc.), and scripts on examples 
can be accessed on GitHub.1 

The rest of this article is organized as follows. In Section 2, we will 
provide details of the FRR method and compare it with the DTW method 
in terms of basic framework, mathematical properties, and computa-
tional efficiency. In Section 3, we will illustrate the use of FRR method in 
real experimental data. We show that this method can effectively 
remove phase variability in given functional signals and such noise 
removal can be used to build more appropriate brain networks. Section 4 
summaries the results and offers conclusions. Computational details on 
DTW and FRR are given in Appendices. 

2. Methods 

2.1. Review of the dynamic time warping method 

The dynamic time warping (DTW) (Sakoe and Chiba, 1978) is a 
finite, discrete, algorithm-based method that can match two curves, in 
the form of two finite-length sequences of sampled points, to correct the 
phase difference. The main idea is to minimize the distance between the 
two sequences through copying and matching the points. To achieve 
this, one needs to select one sequence as the base sequence, while the 
other one as the operating sequence, and define a sliding window. For 
each point in the operating sequence, we can go over all the points in the 
sliding window on the base sequence to compute the cost value. It is 
computed as the distance between the starting point to the current point 
on the operating sequence and the starting point to the matched point on 
the base sequence. In this way, after all cost values for the last point on 
the operating sequence are obtained, the minimum distance between the 
two sequences is defined as the cost of matching the last point on the 
operating sequence to the last point on the base sequence. The imple-
mentation of DTW follows a shortest-path-finding idea. Suppose 
{u(t)}lu

t=1 and {v(t)}lv
t=1 are two sequences with integer time index t and 

the sliding window has window size to be w, the cost Ci,j of matching u(i) 
to v(j), where i = 1, 2, …, lu and j = max{1, i − w},max{1, i − w}+ 1,…,

min{lv, i+ w}, is defined as: 

Ci,j =

⎧
⎪⎪⎨

⎪⎪⎩

d[u(1), v(1)] i = 1, j = 1
d[u(1), v(j)] + C1,j− 1 i = 1, j > 1
d[u(i), v(1)] + Ci− 1,1 i > 1, j = 1

d[u(i), v(j)] + min{Ci,j,Ci− 1,j,Ci,j− 1,Ci− 1,j− 1} i > 1, j > 1.

The d(x, y) in the formula is used to measure the squared distance be-
tween two points x and y. For example, when x and y are real numbers, a 
commonly used d will be the squared Euclidean distance: d(x, 
y) = (x − y)2. To compute the cost for matching u(i) to v(j), one needs to 
compute three adjacent “past” cost values Ci− 1,j, Ci,j− 1 and Ci− 1,j− 1 first. 
In this way, the last cost Clu ,lv is obtained by an iterative way (loop over i, 
while for each i, loop over j). In each iteration, cost is computed and the 
three “past” costs given this cost are stored. Therefore, one can trace 
back from Clu ,lv to get all previous matched costs one by one and figure 
out the shortest-path. The algorithm of the DTW method is given in 
detail in Appendix A. 

A simple illustration of the DTW method is provided in Fig. 1. Sup-
pose there are two sequences of points which are sampled from two 
curves. Sequence 1 has 9 sampled points and Sequence 2 has 11 sampled 
points (see Fig. 1(a)). The corresponding horizontal axis values are set to 
be just the index integers. The metric used is d(x, y) = (x − y)2. For 
simplicity, no sliding window is applied, i.e. w = 11. We need to note 
that the number of sampled points is different for the two curves and the 
aligned curves have more points than the original. The optimal path is 
shown in the matrix in Fig. 1(b). 

We note that in the framework of DTW method, the point matching is 
not one-to-one (see Fig. 1(c)), which may corrupt global features in the 
original curves. The one-to-many matching also results in duplicates of 
some points and stretches the original curves by introducing more 
sampled points, shown in Fig. 1(d). Moreover, since the DTW method is 
algorithm-based, it lacks solid mathematical background. One can only 
use finite, discrete numerical approximation to match two curves under 
the DTW method. 

2.2. The Fisher-Rao registration method 

The Fisher-Rao Registration (FRR) (Srivastava et al., 2011) is a 
nonparametric approach to conduct registration (or alignment) between 
two functions f and g on a time interval such as [0, 1]. The FRR method 
examines functions in the space ℱ = {f : [0,
1]→ℝ | f isabsolutelycontinuous}. The alignment is represented by a time 1 https://github.com/WeilongZ/FRR-vs-DTW.git 
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warping function in the set Γ = {γ : [0, 1]→[0, 1]|γ(0) = 0, γ(1) = 1,
γ̇ > 0}, where γ̇ denotes the derivative function of γ. The set Γ is a group 
with identity γid(t) = t, t ∈ [0, 1]. The main idea of FRR is to find the 
optimal time warping function such that the extended Fisher-Rao dis-
tance between the two curves after warping is minimized, i.e. 

minγ∈ΓdFR(f ∘γ, g).

To achieve this, the concept of squared root velocity function (SRVF) is 
introduced: 

Definition 1. For a function f ∈ ℱ , its SRVF is qf (t) = sign[ḟ(t)]
̅̅̅̅̅̅̅̅̅̅

|ḟ(t)|
√

. 

Given the SRVF function q(t) and function value at time 0, one can 
reconstruct the original function f by: f(t) = f(0)+

∫ t
0 |qf (x)|qf (x)dx. 

SRVF satisfies two important properties which build the registration 
framework: 

Property 1. The Fisher-Rao distance between two functions is the same as 
the L2 distance between their SRVFs, i.e. dFR(f, g) = ‖ qf − qg‖; 

Property 2. For any function f and a time warping function γ, the SRVF of 
f ∘ γ is: 

qf∘γ = (qf ∘γ)
̅̅̅
γ̇

√
.

Based on the above two properties, the optimal time warping func-
tion between two functions f and g can be computed as: 

γ̂ = argminγ∈ΓdFR(f ∘γ, g) = argminγ∈Γ ‖ (qf ∘γ)
̅̅̅
γ̇

√
− qg ‖ . (1)  

Computation of γ̂ in Eq. (1) can be efficiently done using a dynamic 
programming method (Srivastava et al., 2011). Once the optimal 
warping function γ̂ is known, there is no phase difference between f ∘ γ 
and g. The amplitude distance between f and g is given as: 

dAMP(f , g) = dFR(f ∘γ̂, g) =‖ (qf ∘γ̂)
̅̅̅
˙̂γ

√

− qg ‖ .

It is easy to verify that this amplitude distance is a semi-metric. That is, it 
satisfies nonnegativity, symmetry, and triangle inequality. In addition to 
using ̂γ to measure the amplitude distance between f and g, we can use it 
to estimate the phase distance between them. Mathematically, we can 

measure the difference between γ̂ and γid. Based on the Fisher-Rao 
metric, the phase distance is computed as: 

dPHA(f , g) = cos− 1
∫ 1

0

̅̅̅̅̅̅̅̅
˙̂γ(t)

√

dt.

Note that the phase distance is in fact the arc length of γid and γ̂ in their 
SRVF representations in the Hilbert unit sphere S∞. The distance is in 
the range [0, π/2]. 

In addition to the pairwise alignment for two functions, the FRR 
framework can also align a collection of functions. This is based on the 
fact that the amplitude distance is a semi-metric. In this case, we can 
define the notion of “mean” (or template) of the collection of functions 
and then align each function to the template. We briefly write down the 
estimation algorithm for the template of a collection of functions in 
Appendix B. The detailed procedure is given in Srivastava et al. (2011). 

2.3. Advantages of FRR over DTW 

In this subsection, we will systematically compare the FRR and DTW 
methods and demonstrate advantages of FRR. The comparison focuses 
on basic framework, mathematical properties, and computational 
efficiency. 

2.3.1. Basic framework 
As mentioned in Section 2.1, the DTW method is a point-to-point, 

finite, discrete method. In contrast, the FRR method is a function- 
based, continuous method. This difference makes the FRR method su-
perior to the DTW method in three aspects: domain for alignment, unit 
invariance and feature preservation.  

• Domain for alignment: The DTW method allows one-to-many and 
many-to-one mappings in order to obtain the minimal overall cost. 
Moreover, this method only focuses on the number of the sampled 
points, but not the exact time locations of these points. These prop-
erties often make the output of DTW method difficult to use, because 
the number of sample points will be changed in a non-systematical 
way after each alignment (the final number of points is case-by- 

Fig. 1. An illustration of the DTW method to match two curves in the form of two finite-length sequences of sampled points. (a) The original sequences. (b) The cost 
matrix C where the shortest path has been marked in red. (c) The matching relation based on the shortest path. (d) The aligned sequences. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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case in each alignment and it cannot be known until after the 
alignment). In contrast, by considering the points as discrete obser-
vations on a curve, the FRR method naturally takes interpolation 
methods to make the number of points invariant during the align-
ment process. This difference is illustrated using the following 
example. 

As shown in Fig. 2(a), two curves: f1(t) = sin(πt) and f2(t) = 3 sin 
(πt) on [0, 1] are sampled at t = 0, 1

9,
2
9,…,1 (10 points overall). It is 

clear that these two curves are already well aligned, so the ideal 
warping function between them should be the identity γid(t) = t. This 
is what we obtain when the FRR alignment method is used and the 
result in shown in Fig. 2(b). In contrast, when the DTW method is 
applied on the 10 discrete points of the two curves, duplicate points 
are generated to minimize the cost. This is shown in Fig. 2(c). The 
number of sampled points increases from 10 to 14 after the align-
ment and the result is apparently not satisfactory. More importantly, 
there is no clear time locations for these 14 points in the warped 
curves.  

• Unit invariance: Standardization and normalization are two common 
tools in data preprocessing. Both of them are done by adding con-
stants and multiplying constants on all the data. They both aim at 
removing the impact of units or magnitudes (e.g. temperature in 
Celsius and Fahrenheit). For curve alignments, a desirable property 
will be that the matching relation should be invariant with respect to 
the unit. In other words, translation (adding constants to all curve 
points) or scaling (multiplying constants to all curve points) should 
not influence the alignment outcomes. For the DTW method, this 
property does not hold. The DTW alignment only considers point-to- 
point distances, so the shortest path will be different after translation 
or scaling. In contrast, it has been proven in Srivastava et al. (2011) 
that the optimal time warping between two functions is invariant 
with respect to the translation and scale. We will use the following 
examples in Figs. 3 and 4to illustrate this result. 

Basically, the original curves are f1(x) = 2 sin(2π(x − 1)) and f2(x)
= 1.5sin(2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x + 0.5

√
) for x ∈ [0, 1] with 100 uniform sampling 

points, which are shown in Fig. 3(a). We at first align the two 
functions using the DTW method. The result and shortest path are 
shown in Fig. 3(b) and (c), respectively. Similarly, we use the FRR 
method to match f1 to f2. The alignment result and optimal warping 
function are shown in Fig. 3(d) and (e), respectively. For compara-
tive purposes, we standardize each original curve by subtracting the 
mean and dividing the standard deviation (by treating 100 discrete 
points as a sample). Same as in the original curves, we apply both 
DTW and FRR methods and the results are shown in Fig. 4. According 
to Panels (b) and (c) in the two figures, we can see that the shortest 
paths in the DTW method are very different for the original and the 
standardized curves. The alignment on the original curves is not as 
good as the alignment on the standardized curves in terms of the 
matching on peaks and valleys. This shows that for the DTW method, 
translation and scaling will have impact on the result. In contrast, 
From Panels (d) and (e) in the two figures, we can see that the 

optimal warping functions in the FRR method are identical and the 
alignment results are consistent. This well illustrates the invariance 
of the FRR alignment with respect to translation and scaling.  

• Feature preservation: In the DTW algorithm, the goal is to find the 
minimal sum of squared distance on the discrete points. The method 
may distort the given curves’ shapes for such purpose. This problem 
is well known as the pinching effect (Srivastava et al., 2011). This 
effect can corrupt the feature of the original curves by an improper 
alignment. On the contrary, the FRR method is based on a proper 
metric in the function space and can preserve features in the given 
functions. This comparison is illustrated with the following example. 

In Fig. 5(a), we generate two curves f1(t) = 5 sin(4πt3) and 
f2(t) = sin(4πt) on [0, 1]. The sampling points for f1 and f2 are both at 
t = 0, 1

500,
2

500,…,1 (501 points overall). It is observed that both 
curves have two peaks and two valleys, so an ideal mapping is sup-
posed to result in peak-to-peak and valley-to-valley alignment. The 
alignment result using the DTW method is shown in Fig. 5(b). We can 
see that DTW aligns the peak and valley, but destroys the original 
shapes entirely. On the contrary, the matching for FRR method not 
only aligns the peaks and valleys, but also keeps as much the original 
shapes as possible. This result is well demonstrated in Fig. 5(c) and 
(d). 

2.3.2. Mathematical properties 
As we have pointed out, DTW is a procedure-based method on 

discrete sequences. The cost function does not present any metric dis-
tance between two curves. In contrast, FRR follows a rigorous mathe-
matical framework. The optimal distance between two curves naturally 
defines an amplitude metric and a phase metric. Based on these prop-
erties, we can introduce the notion of mean and covariance, and produce 
more powerful statistical analysis tools such as functional principal 
component analysis.  

• Metric property: As mentioned in the previous sections, the FRR 
method is derived from the Fisher-Rao distance. As a result, its 
framework is metric-based and the alignment is a matching of two 
curves. In contrast, the DTW method aims at minimizing the cumu-
lative point-to-point distance and is not metric-based. One advantage 
of the metric-based method is that the matching relation can be well 
captured using the warping functions. We can learn how one curve is 
warped to another in the given time domain and measure the degree 
of warping in the alignment process (using the phase distance dPHA). 
On the contrary, the non-metric-based DTW can only obtain the 
point-to-point relation, and the mapping will change both of the 
curves to achieve the points’ alignment. We will use Fig. 5 again to 
illustrate this difference. 

Basically, Fig. 5(a) shows the original curves f1 and f2, where the 
peaks and valleys present at different time locations. By the DTW 
algorithm, mapping from f1 to f2 has the same result as that from f1 to 
f2. This alignment result is shown in Fig. 5(b). In this case, both se-
quences change length after the alignment (increasing from 501 to 

Fig. 2. Illustration on the properness of the alignment. (a) Given two curves. (b) Alignment result using the FRR method. (c) Alignment result using the DTW method.  
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900). Using Eq. (1) in the FRR method, we can estimate the optimal 
warping function from one function to an objective function where 
the objective one remains unchanged. This is shown in Fig. 5(c) and 
(d). We can see that matching f1 to f2 and vice versa are two opposite 
transformations.  

• Statistical analysis on multiple observations: When dealing with 
multiple-curve alignment, the metric-based FRR method can result in 
more powerful analysis tools. Based on the metric distance, we can 
naturally define the mean of a set of functions {fi}n

i=1 as 

f = argminf

∑n

i=1
d2

AMP(fi, f ). (2)  

As the objective function can remain invariant, we can align every 
function to the mean (or the mapping template), and then all func-
tions can be aligned altogether. Higher order-statistics such as 
covariance can also be computed using the aligned curves. Moreover, 
using the phase distance, we can measure the degree of phase change 
of each curve from the template. Further analysis tools can be 
adopted on the amplitude and phase result from the FRR method. For 
example, one can do functional principle component analysis (fPCA) 
to learn the detailed structure of the given curves (Tucker et al., 

2013). One can also do functional analysis of variance (fANOVA, 
Zhang, 2013) to compare different groups of curves. All these anal-
ysis methods are not available to the DTW method because it is not a 
metric-based method, where the pairwise alignment is the only result 
one can get. 

We here use one example to illustrate the FRR-based functional 
PCA. Let fi(t) =Ai sin(2πtαi), i = 1, 2, …, 10, t ∈ [0, 1], where Ai and αi 
are independently and uniformly distributed with Ai ~ U(1, 5) and 
αi ~ U(1, 3). All the ten curves are shown in Fig. 6(a). It is apparent 
that Ai determines the amplitude variation and αi determines the 
phase variation for each curve. We at first examine functional PCA on 
the given 10 curves and the result is shown in Fig. 6(d). We show the 
mean curve, mean ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
firsteigenvalue

√
× (first eigenfunction) and 

mean ±2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
firsteigenvalue

√
× (first eigenfunction). It is found that the 

first principle component obtained by applying functional PCA 
directly only explains around 65% of the total variance. That is, the 
first principal direction can only partially capture the variability in 
the given data. 

As a comparison, we conduct phase-amplitude separation for the 
original curves under the FRR framework, and then do functional 
PCA on amplitude components and phase components separately. 
The alignment results on aligned curves and time warping functions 
are shown in Fig. 6(b) and (c), respectively. Here, the aligned curves 

Fig. 3. Illustration of the unit invariance property: alignment on original curves. (a) The given original curves. (b) The alignment result by the DTW method. (c) The 
shortest path in the DTW method. (d) The alignment of f1 to match f2 by the FRR method. (e) The optimal warping function in the FRR method. 
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represent the amplitude components and the warping functions 
represent the phase components. Functional PCA on aligned curves 
and warping functions are shown in Fig. 6(e) and (f), respectively. It 
is found that the first principle component for aligned curves ex-
plains about 99% of total amplitude variance and the first principle 
component for warping functions explains about 97% of total phase 
variance. That is, the variability in amplitude and phase can nearly 
entirely captured by the first principal direction, respectively. These 
results show that for functional observations with phase variability 
the FRR method on amplitude and phase component provides a 
better structure representation than that on the original curves. In 
contrast, the DTW method is not able to do any modeling analysis. 

2.3.3. Computational cost 
As mentioned in Section 2.2, γ̂ = argminγ∈Γ ‖ (qf ∘γ)

̅̅̅
γ̇

√
− qg ‖ can be 

numerically solved using a dynamic programming procedure. This is the 
same framework as DTW, and therefore for pairwise alignment FRR and 
DTW have the same computational efficiency. However, as FRR can 
naturally introduce summary statistics, it will have more efficiency for 
group classification in large data sets. 

For example, assume we have two groups of curves {αi(t)}n
i=1 and 

{βj(t)}
n
j=1, where the main difference between these two groups is the 

amplitude (the phase variability is treated as noise). We then observe 
unlabeled new curves {fk(t)}n

k=1 and our goal is to classify these new 
curves to one of the two classes using the nearest neighborhood (NN) 
method. 

For the DTW method, the minimum cost between each pair of 
function is naturally taken as the “distance” in the NN method. For each 
new curve, we need to calculate such DTW distance between it and every 
curve in {αi(t)}n

i=1 and {βj(t)}
n
j=1. These pairwise computations are in the 

order ℴ(n). Therefore, the total cost for all testing curves are in the order 
ℴ(n2). 

In contrast, using the FRR method, the mean curve of each group can 
be efficiently estimated in the computational order ℴ(n) (Srivastava 
et al., 2011). Assume the means are proper representatives in their 
groups, respectively. For each new observation, we only need to 
compute the FRR distance to the two means, and then assign its label 
based on the smaller distance. Therefore, for all n test curves, the total 
computational cost is in the order of ℴ(n) only. This is apparently a 
significant advantage over the DTW method. 

Finally, Table 1 provides a summary of all above comparisons of 
DTW and FRR. 

Fig. 4. Illustration of the unit invariance property: alignment on standardized curves. (a) The given curves after standardization (zero mean, unit variance). (b) The 
alignment result by the DTW method. (c) The shortest path in the DTW method. (d) The alignment of f1 to match f2 by the FRR method. (e) The optimal warping 
function in the FRR method. 
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3. Application in neural signal analysis 

In this section, we apply the FRR method to neural signal analysis on 
an fMRI and an EEG data set. We will illustrate the FRR method using 
sample signals, and then use the FRR method to examine brain 
networks. 

3.1. fMRI and EEG data 

We will at first describe the two datasets we use in this study. 

3.1.1. Data description 
The fMRI data set was taken from Addiction Connectome Pre-

processed Initiative.2 In particular, we use a subset of rest-fMRI data in 
the project of Multimodal Treatment of Attention Deficit Hyperactivity 
Disorder (ADHD), which is per-processed by the National Institute on 
Drug Abuse. The ADHD subset we use consists of 60 subjects, with 30 
non-marijuana users and 30 marijuana users. The 6-min resting-state 
fMRI were band-pass filtered (0.01–0.1 Hz) and 116 brain regions-of- 
interest (ROIs) are drawn using the anatomical labeling atlas (Crad-
dock et al., 2012), which includes precentral gyrus, olfactory cortex, 
hippocampus and other areas. The pre-processing procedure results in 
180 total time points at 0.5 Hz temporal resolution for each subject. 
Fig. 7 shows preprocessed resting-state fMRI functional time series of 
two example ROIs in the marijuana-user group. 

The EEG data were recorded at the Florida State University as a part 
of a prospective study (Clancy et al., 2018), where participants under-
took four days of transcranial alternating current stimulation (tACS) at 

the alpha frequency (8–12 Hz), and resting-state EEG (2 min long) was 
recorded immediately before (baseline), immediately after, and 30 min 
after tACS on Day 1 and Day 4. The raw data was collected from 32 scalp 
electrodes of 33 subjects’ brains at 250 Hz temporal resolution. The 
scalp map for this experiment is shown in Fig. 8(a). The baseline EEG 
recording before tACS on Day 1 and Day 4 are taken in this study. The 
EEG signals were then bandpass (8–12 Hz) filtered to contain alpha os-
cillations. EEG data signals in two example electrodes (AF3 and AF7) in 
Day 1 are shown in Fig. 8(b) and (c). 

3.1.2. Illustration of alignment 
For illustrative purposes, we compare the alignment results by the 

FRR and DTW methods using samples from the fMRI and EEG data sets 
described above. In particular, we select two typical time series from all 
30 marijuana-users from the same ROI (left precentral) in the fMRI set. 
Similarly, we select two typical time series from Electrode 1 (AF7) of the 
Day 1 group in the EEG set. 

The alignment result using the FRR method is shown in Fig. 9. In 
Panel (a), we show two original fMRI signals with time length 3 min, 
denoted as f1 to f2. These two signals have apparent nonlinear phase lag 
between them. We then adopt the FRR framework to conduct alignment. 
The aligned result is shown in Panel (b), where we align f2 to match f1. 
We can see that all peaks and valleys are well matched after the align-
ment process. The optimal warping function is shown in Panel (c), which 
is close to the identical time warping function γid(t) = t. Similar align-
ment on a pair of EEG signals with a length of 1 s is shown in Panels (d), 
(e), and (f). We can see that the FRR method can also align peaks and 
valleys in the signals. 

In contrast, we evaluate the performance of the DTW method on the 
same fMRI and EEG signals and the result is shown in Fig. 10. Note that 
the DTW method is constructed via aggregating point-wise deviations 

Fig. 5. Illustration on the feature preservation. (a) Given two curves f1 and f2. (b) Alignment of f1 and f2 using the DTW method with a clear pinching effect. (c) 
Alignment of f2 to f1 using the FRR method. (d) Alignment of f1 to f2 using the FRR method. 

2 http://fcon_1000.projects.nitrc.org/indi/ACPI/html/index.html 
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for discrete data, and the length of discrete observations are not 
consistent before and after DTW “alignment”. In Panel (a), we show the 
observed sequences with 90 discrete sampling points. The aligned result 
is shown in Panel (b), where pinching effect is clearly observed and the 
number of points increase to 120. Instead of aligning peaks and valleys, 
a lot of flat segments are generated which corrupt the basic features in 
the original data. This pinching effect is supported by the shortest path 
in Panel (c). We see several horizontal and vertical segments which 
indicate one-to-many and many-to-one matchings. Similar alignment on 

a pair of EEG signals with 250 sampling points is shown in Panels (d), 
(e), and (f). We can also see the pinching effect in the alignment result. 

3.2. Brain network via the FRR method 

Recent study on brain network has been focusing on functional 
methods, where neural signals are treated as real-valued functions over 
a continuous time domain. A graph-based method, called functional 
additive semi-graphoid (FASG) model, was developed to build network 
using fMRI data from different brain areas (Li and Solea, 2018). This 
functional graphical model is based on the notion of Additive Condi-
tional Independence (ACI) (Li et al., 2014), where random functions are 
assumed to reside in two level Hilbert spaces – {ℋi}i=1,…,p as the first 
level and a set of {ℳi}i=1,…,p RKHS as the second Hilbert spaces, where p 
denotes the number of vertices in the graph. These two level spaces are 
connected by a set of positive definite mapping {κi(⋅, ⋅)}i=1,…,p from ℋi ×

ℋi→ℝ as kernel functions. 

Xi⊥⊥AXj|X− (i,j), ∀(i, j) ∕∈ E,

where E is edge set, and ⊥⊥A represents the ACI relationship. X is said to 
follow an FASG if the above relationship holds. One of the key benefits of 
this method is its nonlinear, non-Gaussian property. This is more general 
and powerful than conventional Gaussian-based methods (Meinshausen 
et al., 2006; Qiao et al., 2018). In practice, the mapping kernel is often 
taken in the following form: 

κi(f , g) = exp{− γi ‖ f − g‖2
L2},

where γi > 0 is a scale parameter and the norm ‖ ⋅‖2
L2 denotes the 

Euclidean L2 distance. In this study, we introduce FRR as a pre- 
processing procedure to remove the phase variability among one area 

Fig. 6. Illustration on fPCA with FRR framework. (a) 10 simulated curves; (b) aligned curves obtained via the FRR method; (c) time warping functions obtained via 
the FRR method. (d) FPCA result on the original curves: blue line represents the mean curve, red curves represent mean ±

̅̅̅̅̅
λ1

√
f1, and red curves represent mean 

±2
̅̅̅̅̅
λ1

√
f1, where λ1 denotes the first eigenvalue and f1 denotes the first eigenfunction in the original data; (e) same as (d) except for the aligned curves, where λ(a)1 

denotes the first eigenvalue and f (a)1 denotes the first eigenfunction in the aligned curves. (f) Same as (d) except for the warping functions, where λ(p)1 denotes the first 
eigenvalue and f (p)1 denotes the first eigenfunction in the warping functions. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Table 1 
Summary of comparisons between DTW and FRR.  

Method DTW FRR 

Basic framework 

Domain 
Discrete sequence, 
length varied after 
alignment 

Continuous curve, 
length-invariant 

Unit 
Sensitive to 
translation and 
scaling 

Invariant to 
translation and 
scaling 

Features Features distorted 
(pinching effect) 

Features well 
preserved  

Mathematical 
properties 

Metric 
property 

Not metric-based Metric-based 

In-depth 
analysis 

Pairwise distance 
only, no statistical 
analysis 

Summary 
statistics, fPCA, 
fANOVA, etc.  

Computational 
cost 

Pairwise 
alignment 

ℴ(m2) (m: # of 
discrete points)  

ℴ(m2)

Group 
classification 

ℴ(n2) (n: sample 
size)  

ℴ(n)
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Fig. 7. fMRI data in two example brain regions of 30 marijuana users. Every user is represented by a curve where different users have different curve colors. (a) Left 
olfactory. (b) Right olfactory. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. EEG data. (a) EEG Scalp Map (Clancy et al., 2018). (b) Data in the brain region AF7 of 33 subjects. Every user is represented by a curve where different users 
have different curve colors. (c) Same as (b) except for region AF3. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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and then construct the graph with the aforementioned setting. We will 
compare the network results of three methods: (1) Euclidean distance on 
the original data, (2) the DTW distance, and 3) Euclidean distance on the 
aligned data via FRR. 

3.2.1. Network analysis – fMRI data 
We now apply the FASG model under three settings to the fMRI data 

set, described in Section 3.1.1. With 116 ROIs, there are 116 nodes in the 
network. The number of edges in a fully connected network is 
116 × 115/2 =6670. In this study, we construct brain networks by 
connecting edges with top 5% strongest additive dependence in the 
FASG method. That is, we will have 6670 × 0.05 = 334 edges in our 
estimated network. 

In Fig. 11, the constructed networks are shown for two groups by 

Fig. 9. Illustration of the FRR method on real data. (a) One pair of fMRI signals f1 and f2; (b) f1 and the aligned f2 ∘ γ; (c) optimal time warping function; (d), (e), (f) 
Same as (a), (b) and (c) except for a pair of EEG signals. 

Fig. 10. Illustration of the DTW method on real data. (a) One pair of fMRI signals f1 and f2, represented with 90 discrete sampling points. These signals are identical 
to those in Fig. 9(a); (b) aligned signals via DTW; (c) shortest path for the optimal DTW match; (d) one pair of EEG signals f1 and f2, represented with 250 discrete 
sampling points. These signals are identical to those in Fig. 9(d); (e), (f) same as (b) and (c) except for the EEG signals. 
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three settings, namely, {marijuana users, non-marijuana users}×
{Euclidean distance, DTW distance, Euclidean distance after FRR 
alignment}. Visually speaking, the three networks in the upper row (for 
non-marijuana uses) look very similar. At a more detailed level, we can 
see high similarity between networks obtained by FRR and DTW, which 

are somewhat different from that by Euclidean distance. In contrast, the 
three networks in the lower row (for marijuana users) look very much 
different. These results indicate that the three methods can yield sub-
stantial differences in the marijuana user group. 

For each method, we can also observe some difference between the 
non-marijuana-user group and marijuana-user group. We can assess 
whether the difference is statistically significant by a random permu-
tation approach (Li and Solea, 2018). That is, we can check if the dif-
ference between the two groups is due to group variation or random 
variation among individuals. This is quantified by the difference of the 

covariance operators of the two groups. Here we use Σ̂
(1)
XX and Σ̂

(2)
XX to 

denote the covariance operators of the non-marijuana-user and 

marijuana-user groups, respectively. We compute the difference R0 =‖

Fig. 11. Brain networks constructed by the FASG model on the fMRI data. (a) Network obtained by Euclidean distance for the non-marijuana group; (b) network 
obtained by DTW distance for the non-marijuana group; (c) network obtained by Euclidean distance after FRR alignment for the non-marijuana group; (d), (e), (f) 
same as (a), (b), (c) except for the marijuana group. 

Fig. 12. Histogram for covariance operator difference Rs = ‖ Σ̂
(1)
XX(s) − Σ̂

(2)
XX(s) ‖, for s = 1, …, 100 randomly split samples and the position of R0 for true sample 

under different settings, where the red line indicates the position of R0: (a) Euclidean – R0 is larger than 79% of {Rs}
100
s=1; (b) DTW – 96%; (c) FRR – 97%. 

Table 2 
Vertices with more than 20 edges.   

Euclidean DTW FRR 

Non-marijuana 21, 22, 87 21, 22, 27, 28 21, 22, 27, 28, 87 
Marijuana 21, 22, 27, 28 21, 27, 28, 103 21, 22, 27, 28, 105, 107 

Boldface indiacates the three identified cerebellum regions. 
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Σ̂
(1)
XX(0) − Σ̂

(2)
XX(0) ‖ for the original group assignment, and Rs = ‖ Σ̂

(1)
XX(s)

− Σ̂
(2)
XX(s) ‖, s = 1, …, 100, for 100 rounds of random permutation. In 

each round, we randomly assign 30 out of the total 60 as marijuana 
users, and the other 30 as non-marijuana users. Fig. 12 shows the his-
tograms of all Rs and the location of R0. We can see that under the DTW 
and FRR settings (after removing pairwise phase-lags), R0 for the true 
sample locates near the right end of all Rs produced by random per-
mutations. This indicates that, for DTW and FRR, the difference between 
the two groups is statistically significant. In contrast, the R0 obtained by 
Euclidean distance is near the center of the distribution of Rs, which 
implies we cannot tell if the detected difference obtained in Fig. 11 is 
due to group variation or individual variation. 

To further investigate the difference between groups, we list the 

regions with more than 20 edges in Table 2. From this table, we can see 
that in each of the three methods, the number of high-connectivity re-
gions is always slightly higher (by 1) in the marijuana-user group. In 
particular, the DTW and FRR models both identify high-connectivity 
regions in the cerebellum (103, 105 and 107) in the marijuana group. 
The extant literature indicates that long-term daily cannabis users 
showed an increase in cerebellar blood volume (Sneider et al., 2006). 
This is well captured by the DTW and FRR methods when the phase 
variability is removed in the given fMRI signals. In summary, we see 
more high-connectivity regions in the marijuana group compared to the 
non-marijuana group, and the increase in cerebellar blood volume is 
identified by removing phase variability using the DTW and FRR 
methods. 

Finally, we briefly compare the FASG-based network method with 

Fig. 13. Brain networks constructed by the partial correlation method on the fMRI data. (a) Network obtained after the FRR alignment for the non-marijuana group; 
(b) network obtained after the FRR alignment for the marijuana group. 

Fig. 14. Brain networks constructed by the FASG model on the EEG data. (a) Network obtained by Euclidean distance for Day 1; (b) network obtained by DTW 
distance for Day 1; (c) network obtained by Euclidean distance after FRR for Day 1; (d), (e), (f) same as (a), (b), (c) except for Day 4. 
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the traditional Gaussian-based partial correlation method. To utilize the 
FRR framework, the network is constructed using the aligned fMRI 
signals. The result (on the non-marijuana-user group and marijuana-user 
group) is shown in Fig. 13. Similar to that in the FASG method, we at 
first calculate difference of the two precision matrices in the two groups 
and then conduct permutation test to measure the significance. It is 
found that the difference between the two groups is larger than 83% of 
the differences after permutations. Basically, this corresponds to a p- 
value of 0.17, which implies the networks of the two groups are not 
statistically different. 

3.2.2. Network analysis – EEG data 
We also apply the FASG model under three settings to the EEG data 

set. With 32 electrodes, there are 32 nodes in the network. The number 
of edges in a fully connected network is 32 × 31/2 =496. Same as the 
fMRI case, we construct brain networks by connecting edges with top 
5% strongest additive dependence. That is, we will have 
496 × 0.05 = 25 edges in each network. 

The estimated networks using three distances methods on Day 1 and 
Day 4 are shown in Fig. 14. Basically, there is no much difference be-
tween three networks for Day 1 (shown in the upper panels). All of them 
show many connections in the posterior area (17, 18, 19, 20), some 
connections in the central region (7, 8, 9, 11, 22, 24), and very few 
common edges ({(2, 3), (27, 31)}) in the frontal area. However, for Day 
4, the network under Euclidean setting is very different from the other 
two. That is, high connectivity is only detected in the posterior area 
using the Euclidean distance, whereas the networks obtained by DTW 
and FRR are constructed alike – they both show high connections be-
tween the frontal area and the posterior area. It was found that tACS 
induces long-term increases in posterior-to-frontal alpha connectivity 
(Clancy et al., 2018). The networks indicate that this long-term 
enhancement effect is confirmed by the FASG graph model under the 
DTW and FRR settings (pairwise phase-lags are removed). 

Similar to the result on the fMRI data, we also observe difference 
between Day 1 and Day 4 using each distance. To evaluate if the dif-
ference is significant, we again conduct the permutation-based resam-
pling. Results are shown in Fig. 15. It is found that only R0 for FRR 
locates at 97% (above the 95% significance threshold), whereas R0 for 
Euclidean and DTW is below the significance threshold. That is, the 
difference between two different days, reflecting the effect of tACS, can 
be effectively identified using the FRR method, whereas the Euclidean 

and DTW fail to detect the difference. 

4. Summary and conclusion 

Phase variability is commonly observed in various neural signals 
such as EEG and fMRI. Modeling and analyzing those signals has been a 
major challenge, especially when the variability is nonstationary and 
nonlinear. In this article, we propose to adopt the Fisher-Rao registration 
(FRR) framework to deal with this problem. We systematically compare 
our method to the well-known DTW method in three aspects – basic 
framework, mathematical properties, and computational efficiency. The 
comparative result clearly demonstrates the superior performance of the 
FRR method. We then apply the FRR method to brain network problems 
using an fMRI and an EEG dataset. It is found that the FRR method can 
successfully identify difference between states/groups in both datasets, 
whereas DTW fails the task in the EEG dataset. 

The FRR method shows its potentials in analyzing neural signals with 
phase variability. However, more thorough study is needed to under-
stand the results we obtained in the real data analysis. We will also study 
if pre-processing procedures (e.g. normalization) could lead to any 
change in results. So far we have only tested the method with one state- 
of-the-art nonparametric graph model in the brain network analysis. We 
will explore other network models and test the method using more 
extensive data. We will also investigate our framework to study the 
problem of phase synchrony between brain regions (Lachaux et al., 
1999). Finally, the current study focuses on continuous signals such as 
fMRI and EEG. We will explore possibilities to examine latency in 
discrete spike trains between neuronal units. 
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Appendix A. The DTW algorithm 

Algorithm 1 

Fig. 15. Histogram for covariance operator difference Rs = ‖ Σ̂
(1)
XX − Σ̂

(2)
XX ‖, for s = 1, …, 100 randomly split samples and the position of R0 for true sample under 

different settings, and the red line indicates the position of R0: (a) Euclidean – R0 is larger than 89% of {Rs}
100
s=1; (b) DTW – 51%; (c) FRR – 97%. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Dynamic time warping Input: {u(t)}lu
t=1 and {v(t)}lv

t=1 are two curves with observed points; w is the warping window size; 
d is the metric used to compare two points’ distance;  

Initialize C ∈ ℝlu∗lv to be an empty matrix;  
for each i = 1, 2 … lu do 

for each j = max{1, i − w},max{1, i − w} + 1…min{lv, i + w}] do   
if i = 1 and j = 1 then   

C(i, j) = d[u(1),v(1)];   
else if i = 1 and j > 1 then   

C(i, j) = d[u(1),v(j)] + C(1, j − 1);   
else if i > 1 and j = 1 then   

C(i, j) = d[u(1),v(j)] + C(i − 1,1);   
else   

C(i, j) = d[u(i),v(j)] + min{C(i, j),C(i − 1, j),C(i, j − 1),C(i − 1, j − 1)};   
end if 

end for 
end for 
dist = C(lu, lv); id1 = lu; id2 = lv ; path = {(id1, id2)};  
while id1 ∕= 1 or id2 ∕= 1 do 

if id1 > 1 and id2 > 1 then  
temp1 = [id1 − 1, id1, id1 − 1]; temp2 = [id2, id2 − 1, id2 − 1];  
temp3 = argmin{C(id1 − 1, id2), C(id1, id2 − 1), C(id1 − 1, id2 − 1)};  
id1 = temp1(temp3); id2 = temp2(temp3); 

else if id1 = 1 and id2 > 1 then  
id2 = id2 − 1; 

else if i > 1 and j = 1 then  
id1 = id1 − 1; 

end if 
Insert {(id1, id2)} to path on top; 

end while 
Output: dist is the DTW distance between u and v; path is the point-matching path   

Appendix B. The template estimation algorithm 

The optimal template can be computed under the FRR method by:  

1. Compute the SRVFs for the given curves: q1, q2 … qn;  
2. Iteratively: find the mean of the SRVFs μ; match each of the SRVFs to μ and replace the original ones; do until convergence to obtain μ̂, the 

estimated mean in amplitude (the Karcher mean);  
3. Match each of the SRVFs to μ̂ to obtain the estimated phase γ̂1, γ̂2…γ̂n;  
4. Since the SRVF of a time warping function is in S∞, the mean of γ̂1, γ̂2…γ̂n can be computed by the mean of their SRVFs (the Karcher mean), ψ̂ 1,

ψ̂ 2…ψ̂ n, on the infinite-dimension ball, using the shooting vectors’ average and exponential mapping. In this way, the estimated mean in phase, ω̂, 
can be obtained;  

5. Combining the average in amplitude and phase, one can obtain the optimal template: 

q̂temp = (μ̂∘ω̂) ∗

̅̅̅̅̅̅

ω̂
′

√

References 

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014. 
Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 
663–676. 

Brookes, M.J., Hale, J.R., Zumer, J.M., et al., 2011. Measuring functional connectivity 
using MEG: methodology and comparison with fcMRI. NeuroImage 56, 1082–1104. 

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain 
connectivity measured with fMRI. NeuroImage 50, 81–98. 

Chen, J.E., Chang, C., Greicius, M.D., Glovera, G.H., 2015. Introducing co-activation 
pattern metrics to quantify spontaneous brain network dynamics. NeuroImage 111, 
476–488. 

Clancy, K.J., Baisley, S.K., Albizu, A., Kartvelishvili, N., Ding, M., Li, W., 2018. Lasting 
connectivity increase and anxiety reduction via transcranial alternating current 
stimulation. Soc. Cogn. Affect. Neurosci. 13, 1305–1316. 

Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S., 2012. 
A whole brain fMRI atlas generated via spatially constrained spectral clustering. 
Hum. Brain Mapp. 33, 1914–1928. 

Dinov, M., Lorenz, R., Scott, G., Sharp, D.J., Fagerholm, E.D., Leech, R., 2016. Novel 
modeling of task vs. rest brain state predictability using a dynamic time warping 
spectrum: comparisons and contrasts with other standard measures of brain 
dynamics. Front. Comput. Neurosci. 10, 46. 

Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication through 
neuronal coherence. Trends Cogn. Sci. 9, P474–480. 

Friston, K.J., Buechel, C., Fink, G.R., et al., 1997. Psychophysiological and modulatory 
interactions in neuroimaging. NeuroImage 6, 218–229. 

Gupta, L., Molfese, D.L., Tammana, R., Simos, P.G., 1996. Nonlinear alignment and 
averaging for estimating the evoked potential. IEEE Trans. Biomed. Eng. 43, 
348–356. 

Handwerker, D.A., Gonzalez-Castillo, J., D’Esposito, M., Bandettini, P.A., 2012. The 
continuing challenge of understanding and modeling hemodynamic variation in 
fMRI. NeuroImage 62, 1017–1023. 

Huang, H.C., Jansen, B., 1985. EEG waveform analysis by means of dynamic time- 
warping. Int. J. Bio-med. Comput. 17, 135–144. 

Hurtado, J.E., 2004. An examination of methods for approximating implicit limit state 
functions from the viewpoint of statistical learning theory. Struct. Saf. 26, 271–293. 

Jones, D.T., Vemuri, P., Murphy, M.C., et al., 2012. Non-stationarity in the “resting 
brain’s” modular architecture. PLOS ONE 380, 899–907. 
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