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ABSTRACT
Statistical depth, a commonly used analytic tool in nonparametric
statistics, has been extensively studied for multivariate and func-
tional observations over the past few decades. Although various
forms of depth were introduced, they are mainly procedure based
whose definitions are independent of the generative model for
observations. To address this problem, we introduce a generative
model-based approach to define statistical depth for both multivari-
ate and functional data. The proposed model-based depth frame-
work permits simple computation via a bootstrap sampling and
improves the depth estimation accuracy. When applied to func-
tional data, the proposed depth can capture important features
such as continuity, smoothness or phase variability, depending on
the defining criteria. We propose efficient algorithms to compute
the proposed depths and establish estimation consistency. Through
simulations and real data, we demonstrate that the proposed func-
tional depths reveal important statistical information such as those
captured by the median and quantiles, and detect outliers.

KEYWORDS
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1. Introduction

The notion of statistical depth was first introduced (Tukey 1975) as a tool to visualise
bivariate data sets and has later been extended to multivariate data over the last few
decades. The depth is a measure of the centrality of a point with respect to certain
data cloud, which helps to set up centre-outward ordering rules of ranks. Alternatively,
it can be treated as a multivariate extension of the notion of quantiles for univariate
distributions. For instance, a deepest point in a given data cloud can be viewed as a
‘multivariate median’. Based on different criteria on centrality, a large class of depths
has been proposed, including the halfspace depth (Tukey 1975), convex hull peeling
depth (Barnett 1976), simplicial depth (Liu 1990), L1-depth (Vardi and Zhang 2000),
projection depth (Zuo 2003) and Monge–Kantorovich depth (Chernozhukov, Galichon,
Hallin, andHenry 2017). The concept of statistical depth has been widely applied in outlier
detection (Donoho and Gasko 1992), multivariate density estimation (Fraiman, Liu, and
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Meloche 1997), nonparametric description of multivariate distributions (Liu, Parelius, and
Singh 1999), and depth-based classification and clustering (Christmann 2002).

Inmany research areas such asmedicine, biology and engineering, it is natural to assume
the observations being generated from infinite dimensionalmodels and analyse themusing
tools from functional data analysis (FDA). Many efforts have been attempted to extend the
notion of depths from finite to infinite dimensions in recent years. To name a few, Fraiman
and Muniz (2001) defined the integrated data depth for functional data based on integrals
of univariate depths and used it to construct an α-trimmed functional mean to measure
the centrality of given data. This method can reduce the effects of outlier bias in a sample
set compared to the regular mean. In addition, Cuesta-Albertos and Nieto-Reyes (2008)
extended the simple random Tukey depth (also called halfspace depth) to functional data
analysis on a separable Hilbert space. A more comprehensive review on different notions
of depths for functional data is provided in Section 1.1.

Despite the broad variety and wide usage of statistical depths for both finite and infinite
dimensional observations in exploratory data analysis, existing depth methods suffer from
two apparent drawbacks: (1) They do not make use of any structural information from the
generative model when defining or estimating the depths. Utilising such information may
enhance the power of the depth in tasks such as hypothesis testing, outlier detection or clas-
sification. (2) For infinite-dimensional observations such as functional data, most depths
are constructed via aggregating point-wise deviations, which fails to capture deviations of
some more important global features such as phase variability and degree of smoothness.

In this paper, we propose a new model-based framework for defining and estimating
statistical depths for both finite and infinite-dimensional data. In particular, we propose
to incorporate information from the data generative model in defining and estimating the
statistical depth. When applied to functional data, our development leads to a new class of
depths that captures global features such as shape and smoothness level. Our new model-
based depth framework overcomes the aforementioned drawbacks and possesses several
attractive features:

(1) It permits properly utilising features in the generative model to define a data-
dependent depth. Both computational efficiency and estimation accuracy of the depth
can be benefited from the generative model via bootstrap sampling.

(2) The depth criterion is flexible and can be chosen to better capture the underlying gen-
erative mechanism or meet specific application purposes. Depending on the defining
criterion, our framework can result in various forms and generalises commonly used
depth functions.

(3) The criterion may properly measure the metric distance between observations. This
naturally leads to the notions of centrality and variability in the given data. In con-
trast, traditional depth methods are often procedure based and do not provide such
measurements.

1.1. Related work on functional depth

Band depth (López-Pintado andRomo 2009) is a very commonly used depth for functional
data, which has been successfully used for tasks such as classification. Another important
concept is half-region depth (López-Pintado and Romo 2011), which is closely related
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to the band depth. It is considered to be applied to high-dimensional data with efficient
computational cost. Based on the graph representation as in band depth, a number of
extensions, modifications and generalisations have emerged. For example, Agostinelli and
Romanazzi (2013) proposed a so-called local banddepth to dealwith functional datawhich
is considered to have multiple centres. It measures centrality conditional on a neighbour-
hood of each point of the space and provides a tool that is sensitive to local features of the
data, while retaining most features of regular depth functions. Set band depth (Whitaker,
Mirzargar, and Kirby 2013) was proposed for the nonparametric analysis of random sets
and a generalisation of the method of band depth. Agostinelli (2018) proposed several
modified versions of half-region depth to capture more local features. They also estab-
lished similarity measures based on depth value for hierarchical clustering. Balzanella and
Elvira (2015) introduced the spatial variability among the curves in the definition of band
depth and proposed a method – spatially weighted band depth to incorporate the spatial
information in the curves ordering. Dutta, Sarkar, and Ghosh (2016) introduced localised
spatial depth to do multi-classification on high dimensional data.

More progress has been made in recent study of functional depth. Chakraborty and
Chaudhuri (2014b) used the spatial distribution to define a so-called spatial depth, since
the spatial distribution possesses an invariance property under a linear affine transfor-
mation. Einmahl, Li, and Liu (2015) proposed to refine the empirical halfspace depth by
setting extreme value to a so-called ‘tail’ to avoid the problemof vanishing value outside the
convex hull of the data, which benefits for inference on extremity. Narisetty andNair (2016)
introduced a notion called extremal depth, which satisfies the desirable properties of con-
vexity and ‘null at the boundary’, for which integrated data depth and band depth lack.
These properties lead to a central region more resistant to outliers. Based on an elastic-
metric-based measure of centrality for functional data, Cleveland, Zhao, and Wu (2018)
adopted band depth and modified band depth to estimate the template for functional data
with phase variability. They also showed their performance on outlier detection with new
defined boxplots for time warping functions.

The rest of this article is organised as follows: in Section 2, we first introduce ourmodel-
based framework for statistical depth. We then illustrate several forms of depth and their
relations to commonly used depths. In Section 3, we elaborate on the application of our
framework to functional data as generated from a second-order stochastic process. In
Section 4, we investigate the statistical consistency of our depth estimation procedure. Sim-
ulations and real data analysis are provided in Section 5. Section 6 includes a summary and
discusses some future directions. Other computational details and proofs are deferred to
appendices.

2. Model-based statistical depth

In this section, we introduce our model-based framework for statistical depth, where the
model-based has twomeanings: (1) the depth is defined based on a statisticalmodel and (2)
the depth estimation procedure is two stage, where we first estimate the model parameter
and then use a plug-in procedure for estimating the depth. The former view allows the
depth definition itself to be data dependent and automatically capture features underlying
the data generating process, and the latter may lead to improved estimation accuracy of the
depths due to the estimation efficiency of the model parameter.
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Figure 1. Toy example to compare the Monte Carlo method and sample average: (a) 30 i.i.d. sample
points from a standard normal distribution; (b) cumulative distribution functions of true model (blue),
estimated using Monte Carlo method (red), and estimated using the sample average (cyan) in the range
[−1, 1]; (c) quantile values at 25%, 50% and 75% of true and two estimate methods.

To illustrate the benefit in estimation accuracy via model-based procedures, we may
compare the Monte Carlo (MC) method with the simple sample average approach. A toy
example is shown in Figure 1, where we generate 30 i.i.d. sample points from a standard
normal distribution (Figure 1 a). In theMCmethod, we estimate mean and standard devi-
ation from the sample and then generate 2000Monte Carlo sampling points to estimate the
cumulative distribution within [−1,1]. In contrast, the sample average method estimates
the cumulative distribution with the empirical distribution of the 30 points. This compari-
son is shown in Figure 1(b).Moreover, we compare the true and estimated quantiles at 25%,
50% and 75% in Figure 1(c). It is apparent that theMCmethod providesmore accurate and
robust result.

To begin with, we provide a general definition of depth by considering it as a functional
of the underlying data generating model. Then, we provide a two-stage estimation proce-
dure for the depth via a Monte Carlo or bootstrap sampling. In the rest of this paper, we
primarily focus on functional data for illustration, and the development naturally applies
to finite-dimensional data.

2.1. Depths within statistical models

Let P = {Pθ : θ ∈ �} be a family of probability measures indexed by a parameter θ over
a function (vector) space F ⊂ L2([0, 1]) := {f : [0, 1] → R : ‖f ‖22 = ∫ 1

0 f 2(x) dx < ∞}.
For example, Pθ can be the measure of a Gaussian Process GP(m,C) with parameter
θ = (m,C) collecting the mean function m : [0, 1] → R and the covariance function
C : [0, 1] × [0, 1] → R. Statistical depth should quantify how large a particular observed
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trajectory fobs ∈ F deviates from certain notion of centre fc ∈ F under Pθ . For example,
in the case of the Gaussian Process (GP), a natural choice of the centre would be its mean
function.

2.1.1. Definitions of depths
Wewill now provide the formal definition of amodel-based functional depth, as well as the
associated depth contour and central region. All these statistical terms can be considered as
infinite-dimensional generalisation of the uni-variate survival function/p-value, quantiles
and highest-probability region.

Our proposed definition can be either norm based or inner-product based. We refer
to the norm or inner product as the criterion in the definition. The norm-based depth is
a generalisation over various distance-based forms (see the discussion after the following
definition). In contrast, the inner-product depth is motivated with the classical halfspace
depth by Tukey (1975). We at first define the norm-based depth in the following general
form:

Definition 2.1 (Norm-based statistical depth (general form)): The statistical depth Dng
of fobs ∈ F in the model Pθ ∈ P relative to the norm ‖ · ‖ and centre fc ∈ F is defined as

Dng(fobs,Pθ , ‖ · ‖, fc) ∈ [0, 1],

where Dng is strictly decreasing with respect to ‖fobs − fc‖ and Dng → 0 when ‖fobs −
fc‖ → ∞.

Norm-based depths are commonly used in statistics literature. For example, the h-
depth (Nieto-Reyes 2011) and spatial depth (Sguera, Galeano, and Lillo 2014) are based
on the L2 norm, the Lp-depth is based on the Lp norm (Zuo and Serfling 2000; Long
and Huang 2015) and the Mahalanobis depth is based on the Mahalanobis norm (Liu
et al. 1999). The depth in Definition 2.1 generalises these concepts and provides a broader
framework for norm-based methods. In this paper, we study one specific form of the this
general definition. This specific form more resembles conventional depths and satisfies
more desirable mathematical properties. The norm in the definition can be considered as
a criterion function to compute the distance between any observation fobs and the centre
fc and we denote the criterion function as ζ(f , fc) in the rest.

Definition 2.2 (Norm-based statistical depth (specific form)): The statistical depth Dn
of fobs ∈ F in model Pθ ∈ P relative to norm ‖ · ‖ and centre fc ∈ F is defined as

Dn(fobs,Pθ , ‖ · ‖, fc) := Pθ

[
f ∈ F : ‖f − fc‖ ≥ ‖fobs − fc‖

]
.

Remark 2.1: We point out that this specific form of depth is a representative of all norm-
based depth in the general form as defined in Definition 2.1. In fact, Dn(fobs)measures the
degree of extremeness of the observed function fobs ∈ F under any normal-based depth
Dng(fobs) in the following sense,

Pθ

[
Dng(f ) ≤ Dng(fobs)

] = Pθ

[
Dn(f ) ≤ Dn(fobs)

]
= Pθ

[‖f − fc‖ ≥ ‖fobs − fc‖
] = Dn(fobs).
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Remark 2.2: One proper way to choose the centre fc is to minimise P(‖f − fc‖ ≥ a) for
any given a>0. Note that

P(‖f − fc‖ ≥ a) ≤ E‖f − fc‖2
a2

.

When the norm ‖ · ‖ is inner product induced (e.g. the classicalL2 norm), it is easy to know
that the optimal fc should be the expectation Ef. However, fc in general can take different
form, dependent on different selection of the norm.

Based on the definitions of the norm-based depth, we can naturally introduce the
notions of depth contour and central region as follows. We adopt the specific form in
Definition 2.2 to simplify notation (same notion can be directly applied to the general
form).

Definition 2.3 (Depth contour and central region for norm-based depth): For any α ∈
[0, 1], the αth depth contour in the model Pθ ∈ P relative to the norm ‖ · ‖ and centre
fc ∈ F is defined as

Cn(α,Pθ , ‖ · ‖, fc) :=
{
f ∈ F : Dn(f ,Pθ , ‖ · ‖, fc) = α

}
.

Also, the αth central region in the model Pθ ∈ P relative to the norm ‖ · ‖ and centre
fc ∈ F is defined as

Rn(α,Pθ , ‖ · ‖, fc) :=
{
f ∈ F : Dn(f ,Pθ , ‖ · ‖, fc) ≥ α

}
.

Based on the multivariate halfspace depth, we now define the inner-product-based
depth. In contrast to the general and specific forms in the norm-based case, the inner-
product-based norm is defined only in a specific form as follows.

Definition 2.4 (Inner-product-based statistical depth): The statistical depthDip of fobs ∈
F in themodelPθ ∈ P relative to the inner product< ·, · > and a subsetG ofF is defined
as

Dip(fobs,Pθ , 〈·, ·〉,G) := inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈f , g〉 ≥ 〈fobs, g〉

]
Remark 2.3: There are two apparent differences between Definitions 2.2 and 2.4: (1)
Definition 2.2 depends on the centre fc, whereas Definition 2.4 is independent of it.
However, we will point out in Section 2.1.2 that when the distribution function has
a centre under certain form of symmetry, this centre should be the deepest point
under Definition 2.4. (2) Definition 2.4 involves an infimum to match the half-space
depth (Tukey 1975) for finite-dimensional Euclidean data. Different from the usual half-
space depth where G as the range of the infimum is taken as the entire function space F ,
the following lemma shows that for infinite-dimensional functional data, G is necessary to
be a proper, finite-dimensional subset to avoid depth value degeneracy. A proof is provided
in Appendix 5.
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Lemma 2.1: Let PC be the probability measure of a zero-mean Gaussian process GP(0,C),
where the eigensystem {(λj,φj)}∞j=1 of the covariance operator C has infinite number of posi-
tive eigenvalues {λj}∞j=1. If 〈·, ·〉 is an inner product overF such that the P × P Gram matrix
[〈φj,φk〉]Pj,k=1 of the first P eigenfunctions {φj}Pj=1 is positive definite for any P ∈ N, then

Dip(f ,PC, 〈·, ·〉,F) = 0

almost surely for f ∈ GP(0,C).

Remark 2.4: This lemma indicates that special attention is needed for defining an
inner-product-based depth for infinite-dimensional space F . Dutta, Ghosh, and Chaud-
huri (2011) also observed this anomalous behaviour of halfspace depth in infinite-
dimensional spaces. As a consequence, the halfspace depth (where G = F) is only mean-
ingful for finite-dimensional space. In contrast, the norm-based depth can be effective for
both finite- or infinite-dimensional space. To have a proper inner-product-based depth,
either F itself is finite-dimensional, or we use a finite-dimensional subset G as shown in
Definition 2.4.

Under this model-based framework, we can naturally estimate the proposed statistical
depth D(fobs,Pθ , ·, fc) via the following two-stage procedure: (1) find an estimate θ̂ of the
parameter θ and (2) compute the estimated depth D(fobs,Pθ̂ , ·, fc) by either using a closed-
from expression of the depth or by a bootstrapmethod for an approximation. For example,
when Pθ is a GP measure and the depth as a functional of parameter θ may not admit a
closed-form expression, wemay resort to bootstrapmethod for estimating the depth.More
details of the estimation will be provided in Appendix 1.

2.1.2. Mathematical properties
Zuo and Serfling (2000) introduced a list of favourable mathematical properties to be
satisfied by good multivariate statistical depths. Based on this, Nieto-Reyes and Bat-
tey (2016) further explored the extensions of these properties for functional data. Gijbels
and Nagy (2017) discussed these properties on commonly used methods such as the ran-
dom Tukey depth, band depth and spatial depth. In this part, we discuss these properties
on our norm-based and inner-product-based depths.

Before discussing basic properties of these two types of depths, we need to clarify the
concept of ‘halfspace’ with the following definition:

Definition 2.5: A closed halfspace Hh,g for g, h ∈ F is defined in the form

Hh,g = {
f ∈ F : 〈f − h, g〉 ≥ 0

}
.

To make the inner-product-based depth satisfy favourable properties, we need the
following assumption on the ‘ centre’ function fc.

Assumption 2.1: The distributionPθ of a random function f ∈ F is halfspace symmetric, or
H-symmetric, about a unique function fc. That is, P(f ∈ H) ≥ 1/2 for every closed halfspace
H containing fc. Moreover, we assume that P(f ∈ H) < 1/2 for every closed halfspace H that
does not contain fc.
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Now we list four basic properties of the norm-based depth (Definition 2.2) and the
inner-product-based depth (Definition 2.4), respectively, as follows:

Norm-based depth:

P-1. (Linear invariance) Let Pθ ,F denote the distribution Pθ of a random variable F ∈ F .
Then for any a ∈ R \ {0} and h ∈ F ,

D(afobs + h,Pθ ,aF+h, ‖ · ‖, afc + h) = D(fobs,Pθ ,F , ‖ · ‖, fc).
P-2. (Maximality at centre) D(fc,Pθ , ‖ · ‖, fc) = supfobs∈F D(fobs,Pθ , ‖ · ‖, fc).
P-3. (Monotonicity with respect to the deepest point) Let the deepest function be fc ∈ F .

Then for any fobs ∈ F and α ∈ (0, 1), D(fobs,Pθ , ‖ · ‖, fc) ≤ D(fc + α(f − fc),Pθ , ‖ ·
‖, fc).

P-4. (Vanishing at infinity) D(fobs,Pθ , ‖ · ‖, fc) → 0 as ‖fobs‖ → ∞.

Inner-product-based depth:

P-1’. (Linear invariance) Let Pθ ,F denote the distribution Pθ of a random variable F ∈ F .
Then for any a ∈ R \ {0} and h ∈ F ,

Dip(afobs + h,Pθ ,aF+h, 〈·, ·〉,G) = Dip(fobs,Pθ ,F , 〈·, ·〉,G).

P-2’. (Maximality at centre) Dip(fc,Pθ ,< ·, · >,G) = supfobs∈F Dip(fobs,Pθ ,< ·, · >,G).
P-3’. (Monotonicity with respect to the deepest point) Let the deepest function be fc ∈

F . Then for any fobs ∈ F and α ∈ (0, 1), Dip(fobs,Pθ ,< ·, · >,G) ≤ Dip(fc + α(f −
fc),Pθ ,< ·, · >,G).

P-4’. (Vanishing at infinity) Dip(fobs,Pθ ,< ·, · >,G) → 0 as < fobs, fobs >→ ∞.

We examine these mathematical properties of the three defined depths in Section 2.1.1,
as summarised in Lemma 2.2. The detailed proof is given in Appendix 7.

Lemma 2.2: The three depths in Definitions 2.1, 2.2, and 2.4 satisfy the mathematical
properties given below:

(1) Norm-based depth in general form (Definition 2.1): P-2, P-3, P-4.
(2) Norm-based depth in specific form (Definition 2.2): P-1, P-2, P-3, P-4.
(3) Inner-product-based depth (Definition 2.4, givenAssumption 2.1): P-1’, P-2’, P-3’, P-4’.

As comparison, the band depth (López-Pintado and Romo 2009) and half-region
depth (López-Pintado and Romo 2011) for functional data both satisfy the linear invari-
ance property and vanish when norm tends to infinity, but do not hold a monotonicity
property. For random elements from well-known stochastic processes such as Brownian
bridges, both of them will be degenerated at zero (Chakraborty and Chaudhuri 2014a;
Kuelbs and Zinn 2015). For another widely discussed concept of the spatial depth (Sguera
et al. 2014), it is observed that it does not decrease monotonically with respect to the deep-
est point (Nagy 2017). In contrast, a norm-basedL∞ depth (Long andHuang 2015) satisfies
all of the desirable properties of P-1, P-2, P-3 and P-4.
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2.2. Illustration of the depth definitions

We have defined two forms of model-based functional depth – norm-based (as in Def-
initions 2.1 and 2.2) and inner-product-based (as in Definition 2.4). In this section, we
provide some examples, both finite-dimensional and infinite-dimensional, to illustrate
these definitions. We will at first adopt various norms in Dn and then demonstrate the
inner-product-based definition. Using these depths one can rank functional data based on
their amplitude, continuity, smoothness or phase variability. Moreover, we will show that
some of the functional depths can also be directly applied to multivariate data.

2.2.1. Norm-based depth
There are various norms on functional variables. One commonly used is the classical Lp-
norm, with p ≥ 1. That is, for f in a proper space, its Lp-norm is

‖f ‖p =
(∫ 1

0
|f (t)|p dt

)1/p

.

In particular, L2-norm, the Euclidean distance from 0, is most often used in functional
data analysis. Due to the nature of L2 norm, it is a great tool for data visualisation and
ranking based on their own amplitude information.

Considering functions in a Sobolev Space (Hsing and Eubank 2015), we can also useLp

norm on the derivative functions to quantify continuity or smoothness feature. We may
consider the norm-based depth in the following two forms:

(1) Dn(fobs,Pθ , ‖ · ‖, fc) := Pθ [f ∈ F : ‖f − fc‖p ≥ ‖fobs − fc‖p]
(2) Dn(fobs,Pθ , ‖ · ‖, fc) := Pθ [f ∈ F : ‖Drf − Drfc‖p ≥ ‖Drfobs − Drfc‖p], where Dr

indicates rth-order differentiation.

When we adopt the Lp norm, the resulting depth can approximate band depth (López-
Pintado and Romo 2009) for functional observations from a distribution with mean 0.

In addition to having variability in amplitude (characterised by Lp norms), functional
observations often exhibit variability in phase. Such variability has been extensively stud-
ied over the past two decades and various methods were proposed to separate phase
and amplitude, and quantify each variability in the given data (Ramsay and Li 1998; Liu
and Müller 2004; Tang and Müller 2008; Cleveland et al. 2018). In particular, phase is
representedwith timewarping functions – Let� be the set of orientation-preserving diffeo-
morphisms of the unit interval [0, 1]:� = {γ : [0, 1] → [0, 1]|γ (0) = 0, γ (1) = 1, γ̇ > 0}
(the dot indicates derivative operation), and γ is called a warping function. Given two
functions u, v, we denote γuv as the optimal warping from u to v. There are various
forms to define the ‘optimal’ warping, and here we adopt the well-known Fisher–Rao
framework (Srivastava, Wu, Kurtek, Klassen, and Marron 2011) and

γuv = arginfγ∈�‖(u̇ ◦ γ )
√

γ̇ − v̇‖2
where ° denotes the function composition. The degree of warpingness from the iden-
tity γid(t) = t can be properly measured by two distances, namely, the L2 distance and
the Fisher–Rao distance. We may consider the norm criterion based on each of these
distances:
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(1) Dn(fobs,Pθ , ‖ · ‖, fc) := Pθ [f ∈ F : ‖γffc − γid‖2 ≥ ‖γfobsfc − γid‖2]
(2) Dn(fobs,Pθ , ‖ · ‖, fc) := Pθ [f ∈ F : dFR(γffc , γid) ≥ dFR(γfobsfc , γid)], where dFR(γuv,

γid) = cos−1(
∫ 1
0

√
γ̇uv(t)

√
γ̇id(t) dt) = cos−1(

∫ 1
0

√
γ̇uv(t) dt).

Due to the nature of the Fisher–Rao distance, depth based on this criteria in our
framework is sensitive to smoothness in the warping function.

2.2.2. Inner-product-based depth
For multivariate data, Tukey’s halfspace depth (Tukey 1975) is one of the most popular
depth functions available in the literature. Dutta et al. (2011) investigated an extension
on any Banach space and proposed a specialisation on a Hilbert space H. Suppose X is a
random element inH having the distribution F, then the halfspace depth of an observation
x ∈ H is defined as

HD(x, F) = inf
h∈H

P{〈h,X − x〉 ≥ 0},

where < ·, · > stands for the inner product defined on H. Note that the inner-product-
based depth in Definition 2.4 can be rewritten as

Dip(fobs,Pθ , 〈·, ·〉,G) : = inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈f , g〉 ≥ 〈fobs, g〉

]
= inf

g∈G,||g||=1
Pθ

[〈f − fobs, g〉 ≥ 0
]
.

Therefore, the halfspace depth can be treated as one special case in the proposed frame-
work. However, Lemma 2.1 illustrates that the halfspace depth may collapse to zero for
infinite-dimensional functional data unless the underlying data generatingmodel is intrin-
sically finite-dimensional. As a consequence, the choice of the range G of the infimum in
the preceding display becomes important.

In general, there is no simple solution to the above minimisation process (Tukey 1975;
Rousseeuw and Ruts 1996; Dutta et al. 2011). However, if the functions are samples from
a finite-dimensional stochastic process, an optimal g can be found in closed forms. For
illustration purpose, let us assume that the data generating process is a finite-dimensional
Gaussian process, where the optimal g takes the following closed form (see detailed
derivation in Appendix 6),

Dip(fobs) = 1 − 
(‖fobs‖HK ),

where 
 is the c.d.f. of a standard normal random variable and the norm ‖ · ‖HK is the
induced RKHS norm (formal definitions are provided in Section 3). Note that as 
 is the
a c.d.f. function, the depth value of fobs is in the range [0, 1/2], which is consistent to the
notion of halfspace depth in function space (Dutta et al. 2011). It is well known that, for the
halfspace depth, if we have a symmetric distribution in a Hilbert space, then themaximum
depth is 0.5, and the point of symmetry will achieve at the halfspace median. In this case,
it is easy to see that Dip(fobs) = 1/2 ⇔ fobs = 0. Therefore, the median (i.e. function with
largest depth value) is our centre function fc = 0.
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Remark 2.5: The above result is based on the assumption that the stochastic process is a
Gaussian process. However, the Gaussianity is only used in the step that the c.d.f.
 is inde-
pendent of g after the standardisation (i.e. X → X−μg

σg
), and the results can be generalised

to any second-order stochastic process.

Simplifications in Multivariate Data: The above inner-product-based depth can also be
applied tomultivariate data where the Gaussian process reduces to amultivariate Gaussian
distribution, denoted as N (μ,�). In particular, the corresponding inner-product crite-
rion function reduces to a variant of the well-known Tukey’s halfspace depth, or location
depth (Tukey 1975),

Dip(x) = inf
u∈Rd ,‖u‖=1

P{X : 〈u,X − x〉 ≥ 0},

where the new halfspace depth incorporates the second moment information � through
the (zero-mean) inner product < x, y >= xT�−1yT and the norm ‖x‖2 = xT�−1x
induced from the covariance matrix of the multivariate data generating distribution, and
G becomes the unit ball of Rd relative to this inner product.

In the special case, when X is a random realisation from a zero-mean multivariate nor-
mal distribution, orX ∼ N (0,�), then the halfspace depthDip admits a closed form.More
concretely, using the singular value decomposition on the covariance matrix� = UUT ,
where  is a diagonal matrix with elements of eigenvalues {λp}dp=1, we can express X
through a finite-dimensional version of the Karhunen Loève expansion X = ∑d

p=1 ξpUp,
where Up is the pth column of U (i.e. the eigenvector corresponding to λp), and ξp ∼
N (0, λp), p = 1, 2, . . . , d are independent random variables. Correspondingly, the depth
of any x ∈ Rd is given as

Dip(x) = 1 − 


⎛⎜⎝
√√√√√ d∑

p=1

ξ 2p

λp

⎞⎟⎠ .

Note that the maximum depth value computed by this way is the same as maximum via
Tukey’s half space depth, which is 1/2.

3. A newmodel-based depth for functional data

In this section, we apply our proposed depth framework to functional data and propose
a new data-dependent functional depth. As we will illustrate, our new model-based func-
tional depths can capture and adapt to global features such as smoothness and shapes in
the underlying data generating processes. Our proposedmethods incorporate information
from the reproducing kernelHilbert space (RKHS) associatedwith the covariance operator
of the underlying stochastic process.

3.1. Depths induced by reproducing kernels

Wewill provide a construction of norm-based depth for zero-mean second-order stochas-
tic processesF , where the norm itself ismodel dependent and learned from the data. Recall
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that a stochastic process {f (t) : t ∈ [0, 1]} is a second-order process if E[f 2(t)] < ∞ for
all t ∈ [0, 1], so that its covariance function E[f (s)f (t)] is well defined. If the process has a
nonzero mean functionm, then we can always subtract the mean by choosing the centre fc
asm.

3.1.1. Background on covariance kernels
Since {f (t) : t ∈ [0, 1]} is a second-order process, its covariance kernel K ∈ [0, 1] ×
[0, 1] �→ R, K(s, t) := E[f (s)f (t)] is a well-defined function for all (s, t) ∈ [0, 1]2. In addi-
tion, K(·, ·) is a symmetric, positive semi-definite real-value function, that is,

(i) K(s, t) = K(t, s),

(ii)
∫ 1

0

∫ 1

0
K(s, t) h(s) h(t) ds dt ≥ 0 for any h ∈ F .

According to Mercer’s Theorem (J Mercer 1909), there exists a sequence of orthonormal
eigenfunctions {φ1(t),φ2(t), . . .} over [0, 1] and a sequence of corresponding non-negative
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 (Riesz and Nagy 1990) satisfying∫ 1

0
K(s, t)φp(s) ds = λpφp(t), for any p ≥ 1, and K(s, t) =

∞∑
p=1

λpφp(s)φp(t), (1)

which implies
∫ 1
0
∫ 1
0 K2(s, t) ds dt = ∑∞

p=1 λ2p. The convergence in Equation (1) is absolute
and uniform on [0, 1] × [0, 1] (Cucker and Zhou 2007).

By the Karhunen Loève theorem (Ash 1990), a random observation f has the following
representation:

f (t) =
∞∑
p=1

fpφp(t) (2)

where f1, f2, . . . are uncorrelated random variables withmeanEfp = 0, and varianceEf 2p =
λp. Each coefficient fp is unique and can be obtained by fp = ∫ 1

0 f (s)φp(s) ds. In particular,
if the stochastic process is a GP, f1, f2, . . . will be independent Gaussian random variables.

3.1.2. Reproducing kernel Hilbert space and its induced norm
Any symmetric, positive semi-definite function K on [0, 1] × [0, 1] corresponds to a
unique RKHS with K as its reproducing kernel (Wahba 1990). We denote this RKHS by
HK with inner product

〈K(s, ·),K(t, ·)〉HK = 〈K(t, ·),K(s, ·)〉HK = K(s, t).

Moreover, the reproducing property ensures that for any f ∈ HK , 〈f ,K(t, ·)〉HK = f (t). The
inner product induces the RKHS norm ‖f ‖HK = √〈f , f 〉HK . This leads to an equivalent
definition of the RKHS as HK = {f : [0, 1] → R, ‖f ‖HK < ∞}. Therefore, under the rep-
resentations in Equations (1) and (2), we have f ∈ HK if and only if ‖f ‖2

HK
= ∑

p:λp>0
f 2p
λp

<

∞.
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For a random trajectory f ∈ F from a second-order stochastic process with covariance
kernel K, it is important to examine if the norm ‖f ‖2

HK
is finite. If K has only finite number

of positive eigenvalues, this conclusion certainly holds. However, if K has infinite number

of positive eigenvalues, in general
∑

p:λp>0
f 2p
λp

= ∞(a.s.) since by the SLLN,

1
n

n∑
p=1

f 2p
λp

a.s.−→E

(
f 2p
λp

)
= 1

(the case for GP is discussed in (Wahba 1990)).
Consequently, although the RKHS norm ‖ · ‖HK contains important global features

of the underlying data generating process, we cannot use the RKHS norm to define the
depth since the RKHS norm of the observations are infinite almost surely. For example,
for one-dimensional integrated Brownian motions (Vaart and Zanten 2011), it is known
that smoothness level of the sample trajectories is 0.5 smaller than that of its associated
RKHS (for Brownian motion, see Karatzas and Shreve 2012), where the corresponding
RKHS norm coincides with the Sobolev norm. In this paper, we aim to combine these
global features reflected in the RKHS norm into the construction of model-based func-
tional depth. In particular, to solve this divergent issue of the RKHS norm, we propose a
modified RKHS norm in the construction of our norm induced depth for functional data
by weakening the impact of high-frequency signals, which are usually hard to estimate, on
the modified norm.

3.2. Depth induced bymodified RKHS norm

In this section, we propose a modified inner product structure for functions in F . This
new inner product will induce a modified RKHS norm that is almost surely finite for the
sample trajectories from the second-order stochastic process.

3.2.1. Modified inner product and norm
Suppose f, g are two random realisations over F from a second-order stochastic process
with covariance kernelK. Recall the eigen-decompositionK(s, t) = ∑∞

p=1 λpφp(s)φp(t) for
any s, t ∈ [0, 1]. Without loss of generality, we assume all eigenvalues {λp} are positive to
avoid zero appearing in the denominator.

Recall the Karhunen Loève expansion, f (t) = ∑∞
p=1 fpφp(t) and g(t) = ∑∞

p=1 gpφp(t),
with fp = ∫ 1

0 f (s)φp(s) ds and gp = ∫ 1
0 g(s)φp(s) ds. In addition, the RKHS-induced inner

product and norm are given in the following forms, respectively.

〈f , g〉HK =
∞∑
p=1

fpgp
λp

and ‖f ‖ = 〈f , f 〉1/2
HK

As we discussed earlier in Section 3.1, the RKHS norm diverges almost surely. This
divergence motivates us to a modified inner product as follows:

〈f , g〉mod :=
∞∑
p=1

fpgp
λp

a2p,
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where {ap}∞p=1 is any real sequence satisfying
∑∞

p=1 a
2
p < ∞. In practice, we may adopt

commonly used convergent sequence {ap = 1
ps }∞p=1 or {ap = 1√p(log p)s }∞p=1 with s > 1/2.

Our idea is to assign a decaying weight to each positive eigenvalue, so that the overall
sum converges after the adjustment. Thismodified inner product yields a squaredmodified
RKHS norm as

‖f ‖2mod = 〈f , f 〉mod =
∞∑
p=1

f 2p
λp

a2p.

Straightforward calculations yield E(‖f ‖2mod) = ∑∞
p=1

E(f 2p )

λp
a2p = ∑∞

p=1 a
2
p < ∞. As a

consequence, ‖f ‖mod < ∞ almost surely, and the abovemodified inner product and norm
are well-defined for the observed trajectories. We can use this modified RKHS norm
as a selected norm to define a norm-based depth in our framework as described in
Section 5.1.

Recall of Definition 2.2 of depth in Section 2.1: D(fobs,Pθ , ‖ · ‖, fc) = Pθ [‖f − fc‖ ≥
‖fobs − fc‖]. In this case, the central function fc = 0 is the mean function in our model; the
norm function is the modified RKHS norm ‖ · ‖ = ‖ · ‖mod; Pθ is a probability measure
defined by the probability density on ‖f ‖mod or ‖f ‖2mod. Apparently, with different settings
of the decaying sequence {ap}∞p=1, we will have different probability density for ‖f ‖mod or
‖f ‖2mod. It is often intractable to derive a closed-from expression on the density. Fortunately,
our model-based depth framework provides a natural way of estimating the depth through
bootstrap sampling, where the coefficients ({fp} in the Karhunen–Loève expansion) can be
simulated with re-sampling techniques such as the Bootstrap.

3.2.2. Depth estimation procedure and algorithm
Suppose we have n zero-mean independent sample functions f1, . . . , fn ∈ F on t ∈ [0, 1],
and our goal is to compute the model-based depth of any observed sample fobs ∈ F . We
propose an estimation algorithm as follows.

Algorithm I: (Input: functional data {f1, . . . , fn}, any observation fobs, a small
threshold δn > 0, and a sequence a1, . . . , an.

(1) Compute the sample mean function f̂ (t) = 1
n
∑n

i=1 fi(t), and empirical covariance
kernel K̂(s, t) = 1

n
∑n

i=1[fi(s) − f̂ (s)][fi(t) − f̂ (t)];
(2) Eigen-decompose K̂ = ∑n

p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t);
(3) Set λ̂p,n = 0 if λ̂p,n < δn;
(4) SetMn = arg maxm{λm ≥ δn}, and Cn = Mn ∧ n (minimum ofMn and n);
(5) Compute f̂i,p = ∫ 1

0 fi(t)φ̂p,n(t) dt for all i = 1, . . . , n and p = 1, . . . ,Cn, and compute
f̂p = ∫ 1

0 fobs(t)φ̂p,n(t) dt;
(6) For p = 1, . . . ,Cn, re-sample (with replacement) a large number N of coefficients

{ĝj,p}Nj=1 based on {f̂1,p, . . . , f̂n,p};
(7) Construct gj(t) = ∑Cn

p=1 ĝj,pφ̂p,n(t);
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(8) Compute ||fobs||2 ˆmod
= ∑Cn

p=1
f̂ 2p

λ̂p,n
a2p, and ||gj||2 ˆmod

= ∑Cn
p=1

ĝ2j,p
λ̂p,n

a2p;

(9) Estimate the depth of fobs using {gj}:

Dn(fobs; {gj}Nj=1) = 1
N

N∑
j=1

1‖fobs‖2 ˆmod
≤‖gj‖2 ˆmod

.

The first four steps aim to estimate the eigen system of the covariance kernel via given
observations. In particular, the Karhunen Loève expansion (Ash 1990) is used in Step 2 to
decompose the covariance kernel and offer amethod to reconstruct samples. Using a func-
tional principal component analysis (Ramsay 2005), we retain the eigen functions which
explain meaningful variance in our system by truncating the empirical eigenvalues in Step
3 (Nicol 2013).

Steps 5–8 are the second part of the algorithm. They estimate the depth value with
the modified RKHS norm, where we need re-sampling techniques and bootstrap approxi-
mations. This algorithm can be easily adapted to the multivariate data. In such case, the
dimension of the data is already given and the principal component analysis and the
multivariate metric can be directly applied. Step 9 estimates the probability in the depth
definition by resampling from the empirical distribution of the sample basis expansion
coefficients {f̂i,p}pi=1 for each coordinate p = 1, . . . ,Cn.

In Appendix 2, we specialise these developments to finite-dimensional processes (or
multivariate data).

4. Asymptotic consistency

In this section, we will prove the consistency for the newmodel-based depths in Section 3.
We assume the functional data are fully observed over its domain [0, 1]. This assump-
tion is commonly used in asymptotic theory for various depths in functional data such
as the integrated data depth (Fraiman and Muniz 2001), the band depth (López-Pintado
and Romo 2009), the half-region depth (López-Pintado and Romo 2011) and the extremal
depth (Narisetty and Nair 2016).

As our framework is model-based, there will be a main difference in the proofs between
our framework and the traditional functional depth methods. In particular, since previ-
ous depths are independent of the generative model, usually an LLN suffices to show the
consistency. In contrast, our method is considerably more involved since the depth itself is
data dependent – it depends on the estimated model or parameters from the observations.
Despite this extra difficulty in the theory, our new model-based depth can better utilise
the generative patterns in the data, and therefore yields better (discriminative) power and
efficiency in a variety of applications.

We start by introducing the notation used throughout in our proofs. Recall that
F ⊆ L2([0, 1]) is the function space supporting the observations, which are gen-
erated from a second-order stochastic process with covariance function K(s, t) =
E[(f (s) − E(f (s)))(f (t) − E(f (t)))]. Suppose we have n functional replicates f1, . . . , fn ∈
F . Recall that the empirical approximation of K(s, t) is K̂(s, t) = 1

n
∑n

i=1[(fi(s) −
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1
n
∑n

p=1 fp(s))(fi(t) − 1
n
∑n

p=1 fp(t))]. It is clear that K̂ is also a symmetric positive semi-
definite kernel. Recall that, by Mercer’s theorem, we have

K(s, t) =
∞∑
p=1

λpφp(s)φp(t) and K̂(s, t) =
n∑

p=1
λ̂p,nφ̂p,n(s)φ̂p,n(t),

where eigenvalues λ1 ≥ λ2 ≥ · · · and λ̂1,n ≥ λ̂2,n ≥ · · · ≥ λ̂n,n are non-negative, and
their corresponding eigenfunctions {φp}∞p=1 and {φ̂p,n}np=1 are continuous on [0,1]. In
this section, we primarily study the consistency of the proposed depth in the infinite-
dimensional case where λp > 0 for any p ∈ N. Due to space constraint, a counterpart
result in the finite-dimensional case where λp = 0 for all p>P, where P ∈ N, is deferred
to Appendix 4.

4.1. Depth estimation consistency

At first, we study the general case when all eigenvalues {λp}∞p=1 are positive. For any fobs ∈
F , we have shown in Section 3.2 that the squared modified norm

‖fobs‖2mod =
∞∑
p=1

〈fobs,φp〉2
λp

a2p (3)

where 〈·, ·〉 is the classicalL2 inner product and {ap}∞p=1 is a real-valued sequence satisfying∑∞
p=1 a

2
p < ∞. Based on the modified norm, the depth of fobs is given as follows:

dmod(fobs) = Dn(fobs,P, ‖ · ‖mod, 0) = P
[
f : ‖f ‖mod ≥ ‖fobs‖mod

]
= 1 − P

[
f : ‖f ‖2mod ≤ ‖fobs‖2mod

] = 1 − F(‖fobs‖2mod), (4)

where F(x) denotes the cumulative distribution function of ‖f ‖2mod for the random func-
tion f.

As given in Algorithm I, the sample version of the squared modified norm is given as

‖fobs‖2 ˆmod
=

Mn∑
p=1

〈fobs, φ̂p,n〉2
λ̂p,n

a2p (5)

where Mn = arg maxm{λm ≥ δn} for a given small threshold δn > 0. In our framework,
we adopt the sample version of the depth of fobs given as

dmod,n(fobs) = P
[
f : ‖f ‖mod ≥ ‖fobs‖ ˆmod

] = 1 − F(‖fobs‖2 ˆmod
). (6)

In this section, we focus on proving dmod,n(fobs) converges to dmod(fobs) when n is large.
Before we proceed to find consistency of the modified norm, we make the following two
assumptions:

Assumption 4.1: ∃β > 1,C,C1,C2 > 0, s.t.

C1p−β ≥ λp ≥ C2p−β and λp − λp+1 ≥ Cp−(β+1) ∀ p ∈ N.
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Assumption 4.2: There exists a real sequence {bp}∞p=1 and some constant α > 0, such that∑
p b

2
p < ∞, and ap ≤ bp p−α as p goes to ∞.

For convenience, we abuse the notation ‘C′ to denote any constant coefficient. Followed
by Assumption 4.1, it is apparent that the multiplicity of each λp is strictly 1. We point
out that Assumption 4.2 can be easily satisfied in commonly used sequences of {ap}. For
example, if we choose ap = p−(0.5+γ ) for γ > 0, thenwe can choose bp = p−(0.5+γ /2) (with
α = γ /2). Using the sequence {bp}, we can define another type of modified form for any
fobs ∈ F . As compared to modified norm in Equation (3), we only change the sequence
{ap} to {bp}. That is,

‖fobs‖2b =
∞∑
p=1

〈fobs,φp〉2
λp

b2p. (7)

Our main convergence result is given in Theorem 4.1 as follows, where the proof is given
in Appendix 8.

Theorem4.1: UnderAssumptions 4.1 and 4.2, if the covariance kernel K has infinite number
of positive eigenvalues {λp}, then the following holds with probability tending to one as n →
∞,

sup
fobs∈F ,||fobs||≤1,||fobs||b≤1

|‖fobs‖2 ˆmod
− ‖fobs‖2mod| ≤ C n−κ → 0, (8)

where (C, κ) are some positive constants, ‖ · ‖ is the classical L2 norm and ‖ · ‖mod, ‖ · ‖ ˆmod,‖ · ‖b are the norms defined in Equations (3), (5), and (7), respectively. Moreover, for any
fobs ∈ F

lim
n→∞ dmod,n(fobs) = dmod(fobs), (9)

where the two depths dmod,n(fobs) and dmod(fobs) are given in Equations (4) and (6),
respectively.

4.2. Monte-Carlomethod and sample average

We have proven the convergence of the sample depth to the population depth. In prac-
tical computation such as Algorithm I, the sample depth is obtained using samples. In
the proposedmodel-based framework, the depth is computed usingMonte-Carlo samples.
Alternatively, we can simply use the given sample and the estimate will be the sample aver-
age. In this section, we will prove that either of the methods can lead to accurate estimate
asymptotically.

The main result on the Monte-Carlo approximation and sample average can be sum-
marised in the following two theorems, where the detailed proofs are given in Appendix 9.
The main result will be based on the following assumption.

Assumption 4.3: Let f denote an observed sample from the true model. Then ‖f ‖b is sub-
Gaussian, that is, there exists some constantσ > 0, such thatE[exp{t ‖fp‖b}] ≤ exp{σ 2t2/2}
for all t ∈ R.
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This assumption essentially controls the tail probability bound for ‖f ‖b as a ran-
dom variable. In particular, it controls the maximal norm maxi=1,...,n ‖fi‖b as of order
Op(

√
log n) for an i.i.d. sample {fi}ni=1 of size n from the true model, so that we can apply

Theorem 4.1 to control the approximation errors |‖fi‖2 ˆmod
− ‖fi‖2mod| uniformly over all

i = 1, 2, . . . , n.

Theorem 4.2: Let the sample depth dmod,n(fobs) = P[f : ‖f ‖mod ≥ ‖fobs‖ ˆmod] be estimated
as 1

n
∑n

p=1 1‖fp‖ ˆmod≥‖fobs‖m̂od , where {fp} are observed i.i.d. sample from the true model and
the model parameters are estimated from this sample. Then under Assumptions 4.1, 4.2, and
4.3, we have

1
n

n∑
p=1

1‖fp‖ ˆmod≥‖fobs‖m̂od → 1 − F(‖fobs‖2mod),

in probability as n → ∞.

For theMonte Carlo approximation, we consider the simpler case where the true model
is a zeromean Gaussian process with covariance function given byK for technical simplic-
ity, and the Monte Carlo samples are also from a zero mean Gaussian process, but with the
estimated covariance function K̂.

Theorem 4.3: Assume the true model is a zero-mean Gaussian process and let the sample
depth dmod,n(fobs) = P[f : ‖f ‖mod ≥ ‖fobs‖ ˆmod] be estimated as 1

N
∑N

p=1 1‖gp‖ ˆmod≥‖fobs‖m̂od ,
where {gp} are an i.i.d. sample from the estimated distribution. Then under Assumptions 4.1
and 4.2 we have

1
N

N∑
p=1

1‖gp‖ ˆmod≥‖fobs‖ ˆmod
→ 1 − F(‖fobs‖2mod)

almost surely as N, n → ∞.

5. Simulation and real data analysis

In this section, we illustrate applications of our proposed model-based depths to synthetic
data and real data.

5.1. Simulation examples

We will at first use several simulations to illustrate the uses of the norm-based and inner-
product-based forms in Sections 2.2.1 and 2.2.2 for exploratory data analysis of bothmulti-
variate and functional data. In particular, Simulations 1 and 2 focus on several commonly
used norms (inner-products) for model-based depth developed in Section 2, and Simu-
lations 3 and 4 consider the new model-based functional depth introduced in Section 3.
More simulation examples, including multivariate depth, are provided in Appendix 3.

Simulation 1. In this example, we illustrate the Lp induced norms as criteria functions
which are discussed in the first part of Section 2.2.1. We demonstrate our framework by
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observations from zero-mean Gaussian Process with Matérn class kernel on [0, 1]. The
generative formula for Matérn kernel is

KM(xi, xj) = 21−ν

�(ν)

(√
2ν|xi − xj|

l

)ν

Kν

(√
2ν|xi − xj|

l

)
, xi, xj ∈ [0, 1]

where Kν is the modified Bessel function of order ν, and the parameter l is the character-
istic length scale of the process. For instance, if ν = 1

2 and l = 1, then the Matérn kernel
K1(s, t) = exp(−|s − t|), and if ν = 3

2 and l = 1, K2(s, t) = (1 + √
3|s − t|) exp(−√

3|s −
t|), for s, t ∈ [0, 1].

For better visualisation, we sample only one function fromGP(0,K1) on [0, 1], and then
mix it with another n = 29 simulated samples from GP(0,K2) on [0, 1]. All these 30 func-
tions are shown in Figure 2(a). It is apparent that the one function from K1 is near the
zero-line, but somewhat ‘noisy’. In contrast, the 29 functions from K2 have high variability
in the magnitudes, but are very smooth. We then colour-labelled them differently in Pan-
els (b)–(d) using their depth values with respect to different criterion functions, namely,
(1) L2 norm on each function, (2) L2 norm on the first-order derivative of the original
function and (3) L2 norm on the second-order derivative of the original function. In Case
1, the observations are ranked with respect to their absolute magnitudes (well captured by
the L2 norm). In Cases 2 and 3, the observations are ranked with respect to their degrees
of smoothness (well captured by the L2 norms in the first- and second-order derivatives,
respectively). The results clearly illustrate that criteria properly characterise the desirable
features in the data. In Panel (b), we rank the function with respect to their L2 norm. The
one function from K1 is near the zero-line and has the highest depth value. In contrast,
since this function is not smooth, it has the least depth values with derivative-based norms
in Panels (c) and (d).

Simulation 2. In this example, we illustrate the timewarping distance in the depth com-
putation. We study a set of simulated functions {f1, . . . , f21} on [−3, 3]. For i = 1, . . . , 21,
we first simulate a set of functions by hi(t) = φi,1 e−(t−1.5)2/2 + φi,2 e−(t+1.5)2/2, where φi,1
and φi,2 are i.i.d. normal with mean one and variance 1/16. Let the warping function
γi(t) = 6( e

ai(t+3)/6−1
eai−1 ) − 3 if ai �= 0 otherwise γi = γid, where ai are equally spaced between

−1 and 1. The observations are fi(t) = hi(γi(t)) on [−3, 3], i = 1, . . . , 21. At the final step,
we add some noise to the original f11 by f̃11(t) = f11(t) + ε(t), where ε(t) is a Gaussian
process with mean 0 and covariance function C(s, t) = 0.01δs,t . To simplify the notation,
we abuse f11 to denote the noise contaminated f̃11.

All these 21 functions are shown in Figure 3(a), where we use red line to represent f11
and blue lines to represent the others. Before computing depth values, we conduct the
Fisher–Rao alignment procedure to align the observed functions and obtain the corre-
sponding time warping functions {γ̂1(t), . . . , γ̂21(t)} (Srivastava et al. 2011). Let fc denote
the Karcher mean of {f1, . . . , f21} (in the sense of SRVF space). Then the optimal time
warping function from fi to fc is γ̂i, i = 1, . . . , 21.

We take the criterion function ζ(fi, fc) = ‖γ̂i − γid‖2 for the depth computation. The
21 colour-labelled functions using depth values are shown in Figure 3(b). In general, func-
tions in the middle along x_axis have large depth values, whereas those at each side have
low values. In particular, because f11 stays in the middle of the observations, it has the
least L2 warping distance from fc and largest depth values. As comparison we also use the
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Figure 2. Simulation 1: (a) 30 observed functions, where the red one is generated fromGP(0, K1) and 29
blue ones are generated from GP(0, K2). (b) The 30 functions with colour-labelled depth usingL2 norm.
Observations assigned with colour closer to red are considered to be deeper than those assigned with
colour closer to blue. (c) and (d) Same as (b) except forL2 norm on the first and second-order derivative
functions, respectively.

Figure 3. Simulation 2: (a) 21 observed functions,where f11 is emphasised in red colour; (b) 21 functions
with colour-labelled depth via the L2 warping distance ‖γ̂i − γid‖2 and (c) same as (b) except for the
Fisher–Rao distance dFR(γ̂i , γid).

well-known Fisher–Rao distance function ζ(fi, fc) = dFR(γ̂i, γid) for the depth computa-
tion. The 21 colour-labelled functions using depth values are shown in Figure 3(c). As the
Fisher–Rao distance is derivative based, small perturbation on timewarping results in large
difference. The small noise on f11 makes it have smallest depth value in the 21 functions.
For other 20 smooth functions, their depth values are consistent to those in Panel (b).
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Simulation 3. In this illustration, we demonstrate Algorithm I in Section 3 for modi-
fied norm-based depth estimation on a variant of the continuous-time Brownian Bridge
on [0, 1], with different choices of decaying weight sequences {ap}, where the covari-
ance kernel function is K(s, t) = min(s, t) − st for any s, t ∈ [0, 1]. According to the
notation in Equations (1) and (2), we have λp = 1

p2π2 ,φp(t) = √
2 sin(πpt), and can sim-

ulate fp from independent Laplace distribution with mean 0 and variance λp for p =
1, 2, . . . (note that this is different from the normal distribution N (0, λp) in a Brownian
bridge).

More specifically, we sample {fi(t)} by the linear combination fi(t) = ∑500
p=1 fi,pφp(t), i =

1, . . . , n(= 100) to approximate the infinite-dimensional stochastic process. We set
N = 500 and δn = 4 × 10−7 in theMonte Carlo sampling.We have three different settings
to choose theweight coefficients {ap}: (a) ap ≡ 1, (b) ap = 1/p and (c) ap = 1/[√p log(p +
1)], p = 1, . . . ,N. In Case (a), there is actually no weight terms, and the modified norm
is equal to the RKHS induced norm. In Figure 4(a), we show the 100 functions with
colour-labelled using its depth value from this norm. Note that we compute this norm
in a finite-dimensional setup and it will diverge to∞ whenN is large. It is straightforward
to find that

‖f ′i ‖2L2 =
N∑
p=1

∫ 1

0
2π2p2 · f 2i,p cos(πpt)2 dt =

N∑
p=1

π2p2f 2i,p =
N∑
p=1

f 2i,p
λp

= ‖fi‖2HK
. (10)

That is, the RKHS induced norm is the same as L2 norm on the derivative function, a
common measure of smoothness of a function.

InCases (b) and (c), the series satisfies the convergent requirement limN→∞
∑N

p=1 a
2
p <

∞, and therefore the modified norms are well-defined. In particular, we find that when
ap = 1/p, the classical L2 norm

‖fi‖2L2 =
N∑
p=1

∫ 1

0
f 2i,pφ

2
p(t) dt =

N∑
p=1

f 2i,p = 1
π2

N∑
p=1

f 2i,p · 1
1/π2p2

· 1
p2

∝ ‖fi‖2mod. (11)

That is, the modified norm in Case (b) is proportional to the L2 norm. This explains the
result in Figure 4(b) where the 100 functions are colour-labelled using its depth value from
this norm.We can see that high-depth functions are near the zero-line and low-depth func-
tions are near boundary lines. This depth reflects the traditional functional depths such as
band depth and half-region depth (López-Pintado and Romo 2009, 2011). In Case (c), we
use another type of weight coefficient and the depth result is shown in Figure 4(c), which is
very similar to the result in Case (b). The result indicates the robustness of the depth value
with respect to ap.

To evaluate the robustness with respect to δn in Algorithm I, we fix ap =
1/1/[√p log(p + 1)] (as given in Case c) and examine depth values with three different
thresholds {δn}: (d) δn = 0.05, (e) δn = 0.01, and (f) δn = 10−5. In case (d), the estimation
of depth values is relatively poor (see Figure 4 d). This is because this large thresholdmakes
many eigen-components cut off. However, the depth values in Cases (e) and (f), shown in
Figure 4(e,f), are very similar to that in Case (c), shown in Figure 4(c).
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Figure 4. Simulated functions with colour-labelled depth. (a) Each function is colour-labelled using its
depth value, where the sequence {ap} is constant 1 and the threshold δn = 4 × 10−7. Observations
assigned with colour closer to red are considered to be deeper than those assigned with colour closer
to blue. (b) and (c) Same as (a) except that the coefficients ap = 1/p and ap = 1/[

√
p log(p + 1)], p =

1, . . . , 500, respectively. (d)–(f ) Same as (c) except that the thresholds δn are 0.05, 0.01 and 10−5,
respectively.

In summary, we have found that (1) the modified norms can provide different forms of
measurement on the centre-out rank on the given functional observation and some of the
special forms are consistent to the classical norms; (2) the rank may be robust with respect
to different choices of norm and (3) the depth estimation is robust with respect to weight
sequence ap and threshold δn.

In addition, we compare our approach to some well-known depth methods – modified
band depth (López-Pintado and Romo 2009), modified half-region (HR) depth (López-
Pintado and Romo 2011), extremal depth (Narisetty and Nair 2016), and integrated depth
based on the half-space (HS) depth (Nagy, Gijbels, and Hlubinka 2017). All these four
depths, shown in Figure 5, provide consistent centre-out ranks as in Figure 4(b,c). How-
ever, some outer observations are assigned to higher depth values inmodifiedHR depth, as
shown in Figure 5(b); the values of modified band depth and integrated HS depth concen-
trate on higher depth values and low depth values are assigned to only a few observations,
as shown in Figure 5(a,d); and the curves with high depth values (red) and the curves with
middle depth values (yellow and green) are mixed together in extremal depth, as shown
in Figure 5(c). In contrast, the distributions of the proposed depth values are more evenly
distributed in [0, 1], as shown in Figure 4(b,c).

Finally, we compare the computational cost for all above depthmethods. It is found that
all methods can finish calculations within seconds, and there is no significant difference in
terms of efficiency among them.
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Figure 5. Comparison: (a) depth values computed usingmodifiedbanddepthmethod; (b) depth values
computed using modified half-region depth method; (c) depth values computed using extremal depth
method; (d) depth values computed using integrated depth method based on the half-space depth.

Simulation 4.Weconsider a finite-dimensional Gaussian process by selecting a sequence
of orthonormal Fourier basis functions up to order P = 10 on [0, 1] such that

φp(t) =

⎧⎪⎨⎪⎩
1 p = 1√
2 cos(πpt) p = 2, 4, 6, 8, 10√
2 sin(π(p − 1)t) p = 3, 5, 7, 9

,

and a set of coefficients {a1, . . . , aP} ∼ N(0, I10). Then we generateN = 500 functions via
linear combination fi = ∑P

p=1 ai,pφp. Panel (a) in Figure 6 showsn = 21 randomly selected
samples from {fi(t), t ∈ [0, 1]}Ni=1.

From Panel (b) in Figure 6, it is clear that there exists a significant gap in the decreasing
sequence of estimated eigenvalues, and the gap locates just after the order of the dimension
P = 10. This indicates the correct dimension can be easily estimated. From Panel (c), we
can tell that the squared RKHS norm fits χ2(P) well. This is also consistent to the above
theoretical derivation. The estimated depth values are colour-labelled in Panel (d).We note
that the RKHS induced norm does not have a conventionalL2 type of norm, so there is no
direct visualisation to evaluate the depth in this example. However, we point out that if the
data are generated from two random processes, these depth values can help differentiate
the observations, as illustrated in the following.

In particular, we show how the model-based depth can be used for the classifica-
tion purpose, and compare the performance between RKHS norm and the modified one.
Specifically, we select a sequence of orthonormal Fourier basis functions up to order P on
[0, 1] such that for p = 1, 2, . . . ,P,

φp(t) =
{√

2 sin(π(p + 1)t) p is odd√
2 cos(πpt) p is even

,

Then we generate 45 functions as fi(t) = ∑P
p=1 ai,pφp(t), i = 1, . . . , 45 and 5 functions as

fi(t) = ∑P
p=1 bi,pφp(t), i = 46, . . . , 50, where independent coefficients ai,p ∼ N(0, 1) and

bi,p ∼ N(0, 3). Due to the different variance values on the coefficients, the first 45 func-
tions are in the main cluster and the last 5 functions are outliers. One special case when
only P = 4 low frequency basis functions are used is shown in Figure 7(a). Because of
the smaller coefficient variance, the first 45 functions are in a main cluster. In contrast,
some of the last 5 function have much larger amplitude and are apparently outliers. In
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Figure 6. Finite Gaussian Process Illustration: (a) 21 randomly selected samples; (b) Estimated eigenval-

ues λ̂p from the covariance K̂ ; (c) Histogram of squared RKHS norm ‖fi‖2HK̂
= ∑10

p=1
â2i,p
λ̂p,n

, where the red

line indicates a fit to chi-square distribution χ2(10); (d) Estimated depth of the 21 samples with colour
label, where blue to red indicates the depth value range of [0, 1].

another example, we use P = 100 basis functions shown in Figure 7(b). As compared to
whenP = 4, bothmain clusters functions and the five outliers havemuch higher frequency
components.

We have shown that the RKHS induced norm can characterise the smoothness level
in Equation (10) and the modified RKHS norm can characterise the amplitude level (L2

norm) in Equation (11). We at first use these two norms for the case when P = 4 and the
result on depth values is shown in Figure 7(c). Note that for the simulated five outliers, only
three of them show large amplitude as compared to the main cluster, and therefore only
these three have relatively lower depth values by using either RKHS norm or the modified
norm. In contrast, when P = 100, the difference on amplitude for the main cluster and the
five outliers are apparent. This can be easily seen using themodified norm shown in Figure
7(d). As all high frequency basis functions can have large un-smooth level, the RKHS norm
is not able to clearly differentiate five outliers from the main cluster. This is also shown in
Figure 7(d).

To measure the classification performance, we set a threshold of 0.1 on the depth value
for all functions. This is done for the number of basis components P being 4, 10, 20, 30,
40, 70 or 100, which varies from highly smooth to highly nonsmooth observations. The
classification result on all 50 functions is shown in Figure 7(e). In particular, we also show
the detection on the five outliers in Figure 7(f). When P is small, both norms produce
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Figure 7. Classification by depth values: (a) 50 function samples for P = 4, where the blue ones rep-
resent 45 functions in the main cluster and the red ones represent 5 outliers. (b) Same as (a) except
P = 100. (c) Depth values of the 50 functions with P = 4 using the RKHS norm (green circles over blue
lines) and modified RKHS norm (yellow squares over red lines). (d) Same as (c) except P = 100. (e) The
classification accuracy for all 50 functions by using the RKHS norm (blue line) and modified RKHS norm
(red line), where P varies on seven different values 4, 10, 20, 30, 40, 70, and 100. (f ) Same as (e) except
the accuracy on the 5 outlier functions.

reasonable classification accuracy around 95% (a couple of errors in the outliers). When P
gets larger, themodified RKHS can capture larger amplitude in the outliers and reach 100%
classification accuracy. In contrast, all 50 functions have similar smoothing level which
makes the RKHS norm not able to detect the outliers.

5.2. Real data illustration

In this section, we apply our proposed method to detect outliers on a real dataset. The
dataset is taken from the SCOP database (Murzin, Brenner, Hubbard, and Chothia 1995).
We take the subset of proteins with sample size 23 from PDZ domain using PISCES
server (Wang and Dunbrack Jr 2003). The data have been pre-processed as described
inWu, Srivastava, Laborde, and Zhang (2013), and we get normalised data where the three
components are properly rotated and aligned. This given data are shown in Figure 8(a) as
three-dimensional curves and the three components are shown in Figure 8(b).

This given data has been applied with two different norms: one is the classical L2 norm
on three-dimensional functions and the other is the L2 norm on the first derivative func-
tions. The depth values computed by these two different norms are shown in Figure 8(c,d),
respectively. We note that the depth results are very close to each for the two norms –
both methods indicate that the 8th and 12th protein sequences are outliers in our dataset
by using a detection threshold α = 0.05. The two outliers are shown in Figure 8(e,f) as
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Figure 8. Real data example: (a) three-dimensional data of 23 PDZ domain observations; (b) Three-
coordinate components of given observations; (c) depth values computed using the classical L2 norm;
(d) depth values computed using the L2 norm on the first derivative functions; (e) detected outliers
(black dash lines) in three dimensions by using depth values; (f ) three-coordinate components of the
detected outliers (black dashed lines).

three-dimensional curves and for three coordinate components, respectively. It is apparent
that the depth values successfully detect the outliers in the given data.

For comparison, the depth values obtained by the RKHS norm in our framework are
shown in Figure 9(a), where a lot of functions have low depth values and the two outliers
cannot be clearly identified. Figure 9(b) shows the depth values computed by modified
norm with ap = 1/p in our model-based depth framework. It is clearly to see that the 8th
and 12th functions have lowest depth values, though not as close to 0 as the two L2 norms
in Figure 8.

We compare our approach to the well-known depthmethods – band depth and itsmod-
ified version for three-dimensional functional data (López-Pintado and Romo 2009; Ieva
and Paganoni 2013), modified half-region (HR) depth (López-Pintado and Romo 2011),
h-mode depth (Cuevas, Febrero, and Fraiman 2007), and integrated depth based on sim-
plicial depth and half-space (HS) depth (Nagy et al. 2017). With no prior information, the
three components contribute equally in the overall depth estimation. The performance of
band depth shown in Figure 9(c) is very poor, and it implies that there are great difficulties
in applying the band depth due to large variation in the three coordinates. On the other
hand, the result in Figure 9(d) shows that depth values obtained by modified band depth
have a clear large gap between the two outliers and main portion of the data, consistent to
the result in Figure 8, whereas the depth values are distributed in a very narrow range. The
modified HR depth also gives poor performance as illustrated in Figure 9(e). However, the
result for h-mode depth in Figure 9(f) shows three outliers are clearly identified. In par-
ticular, those two with the lowest depth values agree with our approach and the modified
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Figure 9. Comparison: (a) depth values using RKHS induced norm; (b) depth values using modified
RKHS normwith ap = 1/p; (c) depth values computed using band depthmethod; (d) depth values com-
puted usingmodified band depthmethod; (e) depth values computed usingmodified half-region depth
method; (f ) depth values computedusingh-modedepthmethod; (g) depth values computedusing inte-
grated depth method based on the simplicial depth and (h) depth values computed using integrated
depth method based on the half-space depth.

band depth, and the observation with the third lowest depth also has a low depth value in
ourmethod. Finally, the integrated depths (Figure 9 g,h) give similar results as themodified
band depth.

6. Summary and future work

In this article, we have proposed a new framework to define model-based statistical depth
for functional as well as multivariate observations. Our definitions have two forms: norm-
based and inner-product-based. Depending on the selection (of norms), the norm-based
depth can have various centre-outward ranks. For the inner-product depth, it is mainly the
generalisation of the multivariate halfspace depth. We then focus on using norms which
are naturally defined with the generative model. That is, we use induced RKHS norm from
the finite-dimensional covariance kernel in a second-ordered stochastic process. For an
infinite-dimensional kernel, we have introduced a modified version to avoid the infinity
value on the induced norm. For practical use, we propose efficient algorithms to compute
the proposed depths. Through simulations and real data, we demonstrate the proposed
depths reveal important statistical properties of given observations, such as median and
quantiles. Furthermore, we establish the consistency theory on the estimators.

We would like to emphasise that although our proposed methods are derived under the
Gaussian assumption, they apply to any second-order (stochastic) process. This is because
the methods (depth, inner-product, norm) are solely based on the covariance function of
the process. For a Gaussian process, it is completely determined by its first- and second-
order moments. For a general process, it is not. The same expansion (the well-known
Karhunen–Loève expansion given in Equation 2), however, still holds. That is indeed why
we use the resampling step (e.g. Step 6 inAlgorithm I) to generate the coefficients instead of
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sampling from normals. For Gaussian process, the coefficients must follow a normal dis-
tribution and a conventional Monte Carlo method can be used, while in our bootstrap
method, we do resampling to preserve the non-Gaussianity of their distributions. This
means our method actually can be applied to non-Gaussian case, robustly.

In addition, ourmethod uses an induced RKHS norm that is adaptively defined through
the covariance function of the process, which should better capture structures than a pre-
specified norm. Actually, it is easy to come up with some example where the conventional
L2 distance is worse. For example, Simulation 1 shows that blindly using a fixed norm
such as the L2 norm may fail to capture some important features of functional data such
as smoothness. We also point out that even if an RKHSmethod is used to define the norm,
selecting the right space will have a significant impact on the performance of the proce-
dure. If the space is the RKHS induced by the covariance function, then the procedure uses
the second-order moment information, which coincides with our data adaptive method.
Otherwise, for any pre-specified RKHS norm such as the Matérn RKHS, it is easy to have
some examples where smoothness is not important, and blindly using the Matérn RKHS
may lead to misleading results. Even if the RKHS induced by the covariance function of
the data generating process is the Matérn RKHS, selecting a right smoothness level is not
straightforward without learning from the data. Our method estimates the kernel matrix
from the data, which is data-adaptive, and can also be viewed as providing a data-adaptive
way of selecting the smoothness parameter.

Statistical depth is an extensively-studied area. However, all previousmethods are either
procedure-based or properties-based. To the best of our knowledge, this is the first model-
based investigation. This paper introduced the basic framework, but the model is limited
to covariance-based method. Due to the nature of covariance kernel, our framework has a
tendency to deal with second-order stochastic process like Gaussian family well. We plan
to work in a space where higher order statistics can also be important in the future. In
addition, we have discussed four important properties for the proposed depths. As Gijbels
and Nagy (2017) provided an elaboration onmore desirable properties (such as receptivity
and continuity) of statistical depths for functional data, our future work is to investigate
whether our proposed framework wouldmeet those properties. Moreover, since we obtain
median and quantiles by the proposed depths, we can also extend our method to construct
boxplot visualisation. Last but not least, we are seeking broader applications of the new
framework in real world problems such as clustering, classification and outlier detection.
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Appendices

Appendix 1. Algorithms for general model-based depth

Suppose we have n zero-mean independent sample functions f1, . . . , fn ∈ F on t ∈ [0, 1], and our
goal is to compute the model-based depth of any observed sample fobs ∈ F . We first describe the
norm-based depth estimation algorithm as follows:

AlgorithmII: (Input: observations {f1, . . . , fn}, any observation fobs, a threshold ε > 0, the centre
function fc, and the selected norm ‖ · ‖, which means ζ(f , fc) = ‖f − fc‖ for any observation f .

(1) Compute the sample mean function f̄ (t) = 1
n
∑n

i=1 fi(t), and empirical covariance kernel
K̂(s, t) = 1

n
∑n

i=1[fi(s) − f̄ (s)][fi(t) − f̄ (t)]
(2) Eigen-decompose K̂ = ∑n

p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t)
(3) Choose a number P if λ̂P+1 is the first eigenvalue such that λ̂P+1 < ε for sufficiently small ε;

then K̂(s, t) = ∑P
p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t)

(4) Compute f̂i,p = ∫ 1
0 fi(t)φ̂p,n(t) dt for all i = 1, . . . , n and p = 1, . . . ,P, and compute f̂p =∫ 1

0 fobs(t)φ̂p,n(t) dt
(5) Re-sample (with replacement) a large numberN of coefficients {ĝj,p}Nj=1 based on the coefficients

of {f̂i,p}, and construct gj(t) = ∑P
p=1 ĝj,pφ̂p(t)

(6) Estimate the sample depth of fobs w.r.t. {gj}:

Dn(fobs; {gj}Nj=1) = 1
N

N∑
j=1

1(ζ(fobs,fc)≤ζ(gj ,fc)) = 1
N

N∑
j=1

1(‖fobs−fc‖≤‖gj−fc‖),

where 1(·) is the indicator function.

Steps 1–4 are the first part in the algorithm. They aim to estimate the eigen system of the covari-
ance kernel via given observations. In particular, the Karhunen Loève expansion (Ash 1990) is used
in Step 2 to decompose the covariance kernel and offer a method to reconstruct samples (the back-
groundon theKarhunenLoève expansionwill be provided in Section 3).Using a functional principal
component analysis (Ramsay 2005), we retain the eigen functions which explain meaningful vari-
ance in our system. Steps 5 and 6 are the second part of the algorithm. They estimate the depth value
with the given norm, where we need re-sampling techniques and bootstrap approximations. This
algorithm can be easily adapted to the multivariate data. In such case, the dimension of the data
is already given and the principal component analysis and the multivariate metric can be directly
applied.

In general, computing a halfspace depth in Rd is a very challenging task. So far, exact com-
putations can be given only when d = 2 (Rousseeuw and Ruts 1996) and d = 3 (Rousseeuw and
Struyf 1998). There are approximation algorithms when d ≥ 4 (Zuo 2018). However, if the data
distribution is a multivariate normal, our framework will result in an optimal solution similar to
that obtained for the Gaussian process. For infinite dimensional GP, Lemma 2.1 shows that the
inner-product-based depth can only be feasible for finite-dimensional space. Fortunately, when the
random samples are from a finite-dimensional zero-mean Gaussian process, the depth has simple
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closed-form (see detail in Appendix 1). We adopt this special case and modify the above algorithm
for halfspace depth as follows, where Steps 4–6 are simplified as follows:

(4) Compute f̂p = ∫ 1
0 fobs(t)φ̂p,n(t) dt for p = 1, . . . , P

(5) Compute the induced RKHS norm ‖fobs‖2HK̂
= ∑P

p=1
f̂ 2p

λ̂p,n

(6) Compute the depth as Dip(fobs) = 1 − 
(||fobs||HK̂
), where 
(x) denotes the cumulative dis-

tribution function of a standard normal random variable.

Appendix 2. Applications of norm-based depth in finite-dimensional process

Finite-dimensional process is a commonly used stochastic process in practical applications. In
particular, this includes any finite-dimensional Gaussian Process (GP) and multivariate Gaussian
distribution as special cases. In this appendix, we simplify ourmodel in Section 3.2 into a zero-mean
finite-dimensional process, which means that K has a finite number P of positive eigenvalues, and
P will be referred as the dimension of this process. That is, K(s, t) = ∑P

j=1 λjφj(s)φj(t). For conve-
nience we denote this kernel as K = KP. One important benefit in this process is that the associated
RKHS norm is always finite and can be directly used in our construction of norm-induced depth as
described in Section 5.1.

A.1 RKHS norm induced depth for finite-dimensional process

Suppose we have functional observation f ∈ L2([0, 1]) from a zero-mean stochastic process
with covariance kernel KP(s, t) = ∑P

p=1 λpφp(s)φp(t) on [0, 1] × [0, 1]. Then f (t) = ∑P
p=1 fpφp(t),

where f1, . . . , fP are uncorrelated and E(fp) = 0,E(f 2p ) = λp, j = 1, . . . , P. In particular, when the
process is a Gaussian process, f1, . . . , fP are independent. In this case, {Xp = fp/

√
λp}Pp=1 are

i.i.d. samples from a standard normal distribution, and the squared induced norm ‖f ‖2
HK

=∑P
p=1 f

2
p /λp = ∑P

p=1 X
2
p follows a χ2 distribution with P degrees of freedom, denoted as χ2(P).

The computation of depth still depends on Definition 2.2: D(fobs,Pθ , ‖ · ‖, fc) = Pθ [ζ(f , fc) ≥
ζ(fobs, fc)]. The central function fc = 0 is the mean function in our model; the criterion function
ζ(f , g) = ‖f − g‖HK ; Pθ is a probability measure.

We can now rewrite the definition of depth in the following form:

D(fobs,PP, ‖ · ‖HK , 0) = PP
[
f : ‖f ‖HK ≥ ‖fobs‖HK

]
= 1 − PP

[
f : ‖f ‖2

HK
≤ ‖fobs‖2HK

] = 1 − F(‖fobs‖2HK
), (A1)

where F(·) denotes the cumulative distribution function (c.d.f.) of ‖f ‖2
HK

. In the case of Gaussian
process, this is a c.d.f. of χ2(P). Moreover, for any α ∈ [0, 1], the αth depth contour is rewritten as

C(α,PP, ‖ · ‖HK , 0) = {
f ∈ F : F(‖fobs‖2HK

) = 1 − α
}
,

and central region for this model is

R(α,PP, ‖ · ‖HK , 0) = {
f ∈ F : F(‖fobs‖2HK

) ≤ 1 − α
}
.

Based on the above derivation, it is easy to see that the depth contours defined via induced RKHS
norm on aGaussian process are P-dimensional ellipsoids, and the centre of all ellipsoids is the origin
in RP. For illustrative purpose, we let P = 2 and (f1, f2) ∼ N (0,�), with � = diag(λ1, λ2). For
any random samples f (t) = ∑2

j=1 fpφp(t), we could use a point (f1, f2) ∈ R2 to represent random
function f (t), because the coefficients set for each f (t) is unique with respect to the eigen-functions
basis. In Figure A1, if we have any (f1, f2) locating on the same ellipsoid, their corresponding random
observations will have the same depth defined by the induced RKHS norm. In particular, when
� = I2, the depth contours are concentric circles. Moreover, any random observations f (t), whose
coefficients (f1, f2) locates inside of αth contour, will have a larger depth than α.
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Figure A1. Illustration depth contours in the 2-D case where x-axis and y-axis represent the values of f1
and f2, respectively: (a) depth contours at different levels for zero mean Gaussian Process with (f1, f2) ∼
N(0, I2) and (b) same as (a) except that (f1, f2) ∼ diag(1, 0.25).

A.2 Depth estimation procedure and algorithm

Similar to the infinite-dimensional case, we can derive algorithm to compute depth on a
finite-dimensional stochastic process. Suppose we have n independent random sample functions
{f1, . . . , fn} ⊆ F on t ∈ [0, 1], andF is a zero-mean P -dimensional stochastic process. The follow-
ing algorithm is to compute the depth based onF of any observed sample fobs ∈ F . In practice when
P is unknown, we can set a small threshold ε to identify it.

Algorithm III: (Input: functional data {f1, . . . , fn}, any observation fobs, and a threshold
ε > 0.

(1) Compute the sample mean function f̄ (t) = 1
n
∑n

i=1 fi(t), and empirical covariance kernel
K̂(s, t) = 1

n
∑n

i=1[fi(s) − f̄ (s)][fi(t) − f̄ (t)];
(2) Eigen-decompose K̂ = ∑n

p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t);
(3) Choose a number P if λ̂P+1 is the first eigenvalue such that λ̂P+1 < ε for sufficiently small ε;

then K̂(s, t) = ∑P
p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t);

(4) Compute f̂i,p = ∫ 1
0 fi(t)φ̂p,n(t) dt for all i = 1, . . . , n and p = 1, . . . ,P, and compute f̂p =∫ 1

0 fobs(t)φ̂p,n(t) dt;
(5) For each p ∈ 1, . . . , P, re-sample (with replacement) a large number N of coefficients {ĝj,p}Nj=1

based on {f̂1,p, . . . , f̂n,p};
(6) Construct gj(t) = ∑P

p=1 ĝj,pφ̂p,n(t);

(7) Compute ||fobs||2HK̂
= ∑P

p=1
f̂ 2p

λ̂p,n
, and ||gj||2HK̂

= ∑P
p=1

ĝ2j,p
λ̂p,n

;

(8) Estimate the depth of fobs using {gj}:

D(fobs; {gj}Nj=1) = 1
N

N∑
j=1

1‖fobs‖2HK̂
≤‖gj‖2HK̂

.

This algorithm is very similar to Algorithm II. The first three steps are to estimate the eigen-
system of the covariance kernel via our observations. As there are only finite number P of positive
eigenvalues, we can set small threshold to estimate P. Steps 4–8 are to estimate the modified RKHS
norm by resampling based on the eigen-decomposition on the covariance.
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Figure A2. Simulation 3: (a) all 500 simulated functions, where the red curves have the five deepest
values obtained by the proposed method and (b) same as (a) except that the depth values are obtained
by the modified half-region depth.

An important special case is when the process is a Gaussian process. In this case, we have pointed
out the squared norm ‖f ‖2

HK̂
has a Chi-square distribution. Therefore resampling will not be needed

and the estimation of depth will be more robust and efficient. Steps 4–8 can be simplified and
modified to the following three steps:

(4) Compute f̂p = ∫ 1
0 fobs(t)φ̂p,n(t) dt for all i = 1, . . . , n and p = 1, . . . ,P

(5) Compute the induced RKHS norm ‖fobs‖2HK̂
= ∑P

p=1
f̂ 2p

λ̂p,n

(6) Compute the depth as D = 1 − F(||fobs||2HK̂
), where F(x) denotes the cumulative distribution

function of χ2(P).

Appendix 3. More simulation examples

Simulation 5. In this example, we illustrate the inner-product-based depth computation. We first
select a sequence of orthonormal Fourier basis functions up to order P = 10 on [0, 1] such that

φp(t) =

⎧⎪⎨⎪⎩
1 p = 1√
2 cos(πpt) p = 2, 4, 6, 8, 10√
2 sin(π(p − 1)t) p = 3, 5, 7, 9

Next we random generate N = 500 coefficient vectors {(ai,1, . . . , ai,10)}Ni=1 following a multivariate
normal distributionN (0, diag(1, ((P − 1)/P)2, . . . , (1/P)2)). Then we generateN functions via lin-
ear combination fi = ∑P

p=1 ai,pφp. We apply Algorithm I for inner-product depth discussed in the
above section on this simulated data. We display these 500 functions in Figure A2(a), where the five
deepest curves are represented in bold red. We see that these five red ones stay in the middle of
the sample, which illustrate the effectiveness of the depth measurement. As a comparison, we also
show the result obtained by modified half-region depth (López-Pintado and Romo 2011) and the
result is shown in Figure A2(b). Visually, the five deepest functions displayed in Panel (a) seem to be
more centralised near x-axis, and ourmethod provide better centre-outward rank than themodified
half-region depth.

Simulation 6. In this example, we illustrate the norm-based depth on a multivariate data set
and compare the Monte Carlo estimate with sample average (as indicated in the beginning of this
section). We at first generate n = 50 random samples in R2 from multivariate normal distribution
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Figure A3. Simulation 4: (a) 50 points from multivariate normal density with colour-labelled depth by
Algorithm I; (b) depth value comparison: closed-form depth function (x-axis) vs. Monte-Carlo-based
Algorithm I (y-axis) and (c) same as (b) except for sample average method in y-axis.

N (μ,�), where

μ =
(

0
0

)
and � =

(
1 1/3
1/3 1/4

)
.

We choose a Mahalanobis distance as the criterion function, that is, for any x ∈ R2, ζ(x,μ) =√
(x − μ)T�−1(x − μ). Therefore, it is straightforward to derive the closed form of the depth func-

tionD(x) = 1 − F(ζ(x,μ)2), where F(·) denotes the cumulative distribution function of chi-square
distribution with 2 degrees of freedom.

We compute the depth value for each of these 50 points by Monte-Carlo-based Algorithm I, and
then compare the result to the algorithm integrated with sample average of these points. We display
these 50 points with colour label of their depth values in Figure A3(a). Note that the depth value
using the Mahalanobis distance criterion ranges from 0 to 1 and the distribution of these depth
values approximately follow elliptic contours for a two dimensional normal distribution. Since we
obtain the closed-form depth values, we can use them to compare the performance of Monte Carlo
and sample average method. In Algorithm I, we generate 5000 re-sampling points in step 5. The
results in Figure A3(b,c) show that the depth values computed by Algorithm I are very close to the
theoretical ones, whereas the sample average method does not have the same level of accuracy.

Appendix 4. Depth estimation consistency in finite-dimensional data

In this case, ∃P ∈ N such that λP > 0 and λp = 0, ∀ p > P under the notation setup in Section 4 of
the main paper. Then K(s, t) = ∑P

p=1 λpφp(s)φp(t) and K̂(s, t) = ∑n
p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t). There-

fore, for any fobs ∈ F , we have the squared RKHS induced norm

‖fobs‖2HK
=

P∑
p=1

〈fobs,φp〉2
λp

< ∞, (A2)

where 〈·, ·〉 indicates the inner product operation in RKHS with K as reproducing kernel.
Based on the RKHS norm, the depth of fobs is given as follows:

d(fobs) = Dn(fobs,P, ‖ · ‖HK , 0) = P
[
f : ‖f ‖HK ≥ ‖fobs‖HK

] = 1 − F(‖fobs‖2HK
), (A3)

where F(x) denotes the cumulative distribution function of ‖f ‖2
HK

for all f ∈ F .
As given in Algorithm II in Appendix 7, the sample version of the squared modified norm is

given as

‖fobs‖2HK̂
=

n∑
p=1

〈fobs, φ̂p,n〉2
λ̂p,n

. (A4)
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Similar to Case I, we adopt the sample version of the depth of fobs

dn(fobs) = P

[
f : ‖f ‖HK ≥ ‖fobs‖HK̂

]
= 1 − F(‖fobs‖2HK̂

). (A5)

We focus on proving dn(fobs) converges to d(fobs) when n is large. This is shown in Theorem A.1 as
follows. In this case, neither a convergent weight series {ap} nor Assumption 4.1 is needed in the
proof of consistency.

Theorem A.1: If the covariance kernel K has only P(∈ N) positive eigenvalues {λp}, then we have

sup
fobs∈F ,||fobs||≤1

|‖fobs‖2HK̂
− ‖fobs‖2HK

| a.s.−→ 0.

Moreover, for any fobs ∈ F
lim
n→∞ dn(fobs) = d(fobs).

Proof: As convergence almost surely implies convergence in distribution, it is apparent that we only
need to prove the first convergence ‖fobs‖2HK̂

a.s.−→ ‖fobs‖2HK
.

Based on thework done byDauxois, Pousse, andRomain (1982) and Bosq (2012), when n is large,
we have λ̂p,n

a.s.−→ λp > 0 for p ∈ {1, . . . , P}, while λ̂p,n
a.s.−→ 0 for p ∈ {P + 1, . . . , n}(Tran 2008).

We denote K̆(s, t) = ∑P
p=1 λ̂p,nφ̂p,n(s)φ̂p,n(t), andwewill get ‖K̆ − K̂‖ a.s.−→ 0 as n → ∞. Besides,

we have ‖K̂ − K‖ a.s.−→ 0(Dauxois et al. 1982), hence ‖K̆ − K‖ a.s.−→ 0.

If we denote K−1(s, t) = ∑P
p=1

φp(s)φp(t)
λp

and K̆−1(s, t) = ∑P
p=1

φ̂p,n(s)φ̂p,n(s)
λ̂p,n

,

‖K̆−1 − K−1‖ = ‖K̆−1(K̆ − K)K−1‖
≤ ‖K̆−1‖‖K̆ − K‖‖K−1‖

= 1
λ̂p,n

1
λp

‖K̆ − K‖ a.s.−→ 0.

In Algorithm II, the estimated depth is written as

‖fobs‖2HK̆
=

P∑
p=1

〈fobs, φ̂p,n〉2
λ̂p,n

=
P∑

p=1

∫ 1

0

∫ 1

0
fobs(s)fobs(t)

φ̂p,n(s)φ̂p,n(s)

λ̂p,n
ds dt

=
∫ 1

0

∫ 1

0
fobs(s)fobs(t)K̆−1(s, t) ds dt

Therefore,

| ‖fobs‖2HK̆
− ‖fobs‖2HK

|

= |
∫ 1

0

∫ 1

0
fobs(s)fobs(t)K̆−1(s, t) ds dt −

∫ 1

0

∫ 1

0
fobs(s)fobs(t)K−1(s, t) ds dt |

= | 〈fobs, (K̆−1 − K−1)fobs〉 |
≤ ‖fobs‖2‖K̆−1 − K−1‖ a.s.−→ 0.

�
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Appendix 5. Proof of Lemma 2.1

To better streamline the proof, we first prove the claimed result when the inner-product is induced
from the reproducing kernel Hilbert space (RKHS) associated with the covariance function of the
GP (which satisfies the Grammatrix condition of the lemma), and then extend the proof to a general
inner product. Specifically, we show:

(1) (basic form) If we take the induced RKHS (reproducing-kernel Hilbert space) inner-product
< ·, · > using the covariance function C, then

Dip(fobs,PC, 〈·, ·〉,F) = 0

almost surely for fobs ∈ GP(0,C)

(2) (general form) The above result will in fact hold for any inner-product on F that satisfies the
condition in the lemma.

Proof: (Part 1) Based on the result in Sec 3.1.2, assume the covariance function C(·, ·) in a Gaussian
process GP(0,C) has infinite number of positive eigenvalues. Then the covariance can be repre-
sented as C(s, t) = ∑∞

p=1 λpφp(s)φp(t). For any fobs ∈ GP(0,C), let fobs,p = ∫ 1
0 fobs(s)φp(s) ds. We

have fobs(t) = ∑∞
p=1 fobs,pφp(t). Hence, the induced RKHS norm

‖fobs‖HC =
∞∑
p=1

f 2obs,p
λp

= ∞ (a.s.)

For any integer P> 0 and function f ∈ F , we let f P represent the finite cutoff of f at the Pth order.
That is, f P(t) = ∑P

p=1 fpφp(t). Let GP denote the finite-dimensional space expanded by {φp(t)}Pp=1.
Using the result in Appendix 1, the inner-product depth

Dip(f Pobs,PC, 〈·, ·〉,GP) = 1 − 
(‖f Pobs‖HC ). (A6)

Note that ‖f Pobs‖HC = ∑P
p=1

f 2obs,p
λp

→ ∞(a.s.) as P → ∞. Then 1 − 
(‖f Pobs‖HC ) → 1 − 
(∞) =
1 − 1 = 0 (a.s.) Finally, we have

Dip(fobs,PC, 〈·, ·〉,F) ≤ inf
P
Dip(f Pobs,PC, 〈·, ·〉,GP) → 0. (a.s.)

(Part 2)We see that the proof of Part 1mainly relies on the result inAppendix 1 (EquationA6), where
we use the induced RKHS inner product. Let f be a realisation from the Gaussian process GP(0,C).
Here we just need to show that using the new inner product, such equation will still hold. Again,
we consider the finite cut-off of f Pobs at the Pth order and will show that Equation (A6) remains valid
with the new inner product 〈·, ·〉. Therefore, we suppress the superscript P in proving this equation
in the rest of this part. Under this notation, we can write

f (t) =
P∑

p=1
fpφp(t) ∈ HK ,

g(t) =
P∑

p=1
gpφp(t) ∈ HK ,

fobs(t) =
P∑

p=1
fobs,pφp(t) �= 0 ∈ HK ,

where fp are independent normal random variables with Efp = 0 and Varfp = λp, p = 1, . . . , P.
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For this new inner product < ·, · > on F , let rij =< φi,φj > for 1 ≤ i, j ≤ P. We also denote

X = 〈f − fobs, g〉 =
P∑
i=1

P∑
j=1

(fi − fobs,i)gjrij = −
P∑
i=1

P∑
j=1

fobs,igjrij +
P∑
i=1

P∑
j=1

figjrij.

It is straightforward to know thatX is normally distributedwithEX = −∑P
i=1

∑P
j=1 fobs,igjrij := μg

and VarX = ∑P
i=1(

∑P
j=1 gjrij)

2λi := σ 2
g . Now we can compute the probability

Pθ

[〈f − fobs, g〉 ≥ 0
] = Pθ [X ≥ 0] = Pθ

[
X − μg

σg
≥ −μg

σg

]
= 1 − Pθ

[
X − μg

σg
≤ −μg

σg

]
.

With the normal assumption, Pθ [< f − fobs, g >mod≥ 0] = 1 − 
(−μg
σg

) where 
 is the c.d.f. of a

standard normal random variable X−μg
σg

(it does not depend on g). To minimise the probability with
respect to g, we need to maximise −μg/σg , or μ2

g/σ
2
g .

By the Cauchy inequality, we have

μ2
g

σ 2
g

=
(∑P

i=1
∑P

j=1 fobs,igjrij
)2

∑P
i=1

(∑P
j=1 gjrij

)2
λi

=
(∑P

i=1
fobs,i√

λi

√
λi
∑P

j=1 gjrij
)2

∑P
i=1

(∑P
j=1 gjrij

)2
λi

≤
∑P

i=1

(
fobs,i√

λi

)2∑P
i=1(

√
λi
∑P

j=1 gjrij)
2

∑P
i=1

(∑P
j=1 gjrij

)2
λi

=
∑
i

f 2obs,i
λi

The equality holds if and only if there exists c > 0 such that c fobs,i√
λi

= √
λi
∑P

j=1 gjrij, i = 1, . . . ,P.
That is,

P∑
j=1

gjrij = c
fobs,i
λi

, i = 1, 2, . . . , P.

Under the condition on the inner-product in the lemma, this set of linear equations always admits
a unique solution. By plugging-in this solution, the maximum of −μg

σg
is obtained at

−
−∑P

i=1 fobs,i
∑P

j=1 gjrij√∑P
i=1

(∑P
j=1 gjrij

)2
λi

=
∑P

i=1 fobs,ic
fobs,i
λi√∑P

i=1(c
fobs,i
λi

)2λi

=
√√√√ P∑

i=1

f 2obs,i
λi

= ‖fobs‖HC .

Finally, the depth of fobs is still given in the following form:

Dip(fobs,Pθ , 〈·, ·〉,F) = 1 − 
(‖fobs‖HC ).

�

Appendix 6. Optimal solution of the inner-product-based depth

We assume that f ∈ F(⊂ L2([0, 1])) is random realisations from one zero-mean Gaussian process
with covariance kernel K in a finite Karhunen Loève expansion K(s, t) = ∑P

p=1 λpφp(s)φp(t), s, t ∈
[0, 1]. As discussed in Section 3.1.2, the realisations from the Gaussian process form an RKHS HK .
Let

f (t) =
P∑

p=1
fpφp(t) ∈ HK ,



JOURNAL OF NONPARAMETRIC STATISTICS 351

g(t) =
P∑

p=1
gpφp(t) ∈ HK ,

fobs(t) =
P∑

p=1
fobs,pφp(t) �= 0 ∈ HK ,

where fp are independent normal random variables with Efp = 0 and Varfp = λp, p = 1, . . . , P.
Using the inner product, we denote

X = 〈f − fobs, g〉HK =
P∑

p=1

(fp − fobs,p)gp
λp

= −
P∑

p=1

fobs,pgp
λp

+
P∑

p=1

fpgp
λp

.

It is straightforward to know that X is normally distributed with EX = −∑P
p=1

fobs,pgp
λp

:= μg and

VarX = ∑P
p=1

g2p
λp

:= σ 2
g . Now we can compute the probability

Pθ

[〈f − fobs, g〉HK ≥ 0
] = Pθ [X ≥ 0] = Pθ

[
X − μg

σg
≥ −μg

σg

]
= 1 − Pθ

[
X − μg

σg
≤ −μg

σg

]
.

With the normal assumption, Pθ [< f − fobs, g >HK≥ 0] = 1 − 
(−μg
σg

) where 
 is the c.d.f. of a

standard normal random variable X−μg
σg

(it does not depend on g). To minimise the probability with
respect to g, we need to maximise −μg/σg or μ2

g/σ
2
g .

Let

ap = fobs,p
λp

, bp = 1√
λp

.

Then use the Cauchy inequality,

μ2
g

σ 2
g

=
(∑

p apgp
)2

∑
p b

2
pg2p

=
(∑

p
ap
bp bpgp

)2
∑

p b
2
pg2p

≤
∑

p

(
ap
bp

)2∑
p(bpgp)

2∑
p b

2
pg2p

=
P∑

p=1

(
ap
bp

)2
.

The equality holds if and only if there exists c > 0 such that c apbp = bpgp, p = 1, . . . , P. That is,

gp = c
ap
b2p

= c · fobs,p
λp

· λp = cfobs,p.

With the constraint ||g||HK = 1,

1 = 〈g, g〉HK =
P∑

p=1

g2p
λk

=
P∑

p=1

c2f 2obs,p
λp

= c2
P∑

p=1

f 2obs,p
λp

= c2‖fobs‖2HK
.

Therefore, c2 = 1
‖fobs‖2HK

and gp = fobs,p
‖fobs‖HK

. We have found the optimal solution

g∗(t) = arginfg∈F ,||g||HK =1Pθ

[〈f − fobs, g〉HK ≥ 0
] =

P∑
p=1

fobs,p
‖fobs‖HK

φp(t) = fobs(t)
‖fobs‖HK

.

With this optimal g∗,

−μg∗

σg∗
= −

−∑P
p=1

fobs,pgp
λp√∑P

p=1
g2p
λp

=
∑P

p=1
fobs,p
λp

· fobs,p
‖fobs‖HK√∑P

p=1
f 2obs,p

‖fobs‖2HK
· 1

λp

= ‖fobs‖HK .
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Finally, the depth of fobs is given in the following form:

Dip(fobs) := Dip(fobs,Pθ , 〈·, ·〉,F) = 1 − 
(‖fobs‖HK ).

Appendix 7. Proof of Lemma 2.2

Proof: (1) Norm-based depth in general form:
• P-2: By definition, the general depth Dn(fobs,Pθ , ‖ · ‖, fc) is strictly decreasing with respect

to ‖fobs − fc‖. As ‖fobs − fc‖ ≥ ‖fc − fc‖ = 0, we have Dn(fobs,Pθ , ‖ · ‖, fc) ≥ Dn(fc,Pθ , ‖ ·
‖, fc).

• P-3: For any α ∈ (0, 1), ‖fc + α(fobs − fc) − fc‖ = α‖fobs − fc‖ ≤ ‖fobs − fc‖. By Defini
tion 2.1, Dn(fc + α(fobs − fc),Pθ , s, fc) ≥ Dn(fobs,Pθ , ‖ · ‖, fc).

• P-4: Obvious.
(2) Norm-based depth in specific form:

• P-1: Dn(afobs + h,Pθ ,aF+h, ‖ · ‖, afc + h) = Pθ [f : ‖af + h − (afc + h)‖ ≥ ‖afobs + h −
(afc + h)‖] = Pθ [f : ‖f − fc‖ ≥ ‖fobs − fc‖] = Dn(fobs,Pθ ,F , ‖ · ‖, fc)

• P-2: Dn(fobs,Pθ , ‖ · ‖, fc) = Pθ [f : ‖f − fc‖ ≥ ‖fobs − fc‖] ≤ Pθ [f : ‖f − fc‖ ≥ 0] =
Dn(fc,Pθ , ‖ · ‖, fc)

• P-3: For any α ∈ (0, 1), Dn(fc + α(fobs − fc),Pθ , s, fc) = Pθ [f : ‖f − fc‖ ≥ ‖fc + α(fobs −
fc) − fc‖] = Pθ [f : ‖f − fc‖ ≥ α‖(fobs − fc)‖] ≥ Pθ [f : ‖f − fc‖ ≥ ‖fobs − fc‖] =
Dn(fobs,Pθ , ‖ · ‖, fc).

• P-4: Dn(fobs,Pθ , ‖ · ‖, fc) = Pθ [f : ‖f − fc‖ ≥ ‖fobs − fc‖] ≤ Pθ [f : ‖f ‖ ≥ ‖fobs‖ − 2‖fc‖]
→ 0 (as ‖fobs‖ → ∞).

(3) Inner-product-based depth:
(a) P-1:

Dip(afobs + h,Pθ ,aF+h, 〈·, ·〉,G)

= inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈af + h, g〉 ≥ 〈afobs + h, g〉]

= inf
g∈G,||g||=1

Pθ

[
f ∈ F : a〈f , g〉 ≥ a〈fobs, g〉

]
= Dip(fobs,Pθ ,F , 〈·, ·〉,G)

(b) P-2: It is straightforward to prove this property followed by Assumption 2.1. For any
g ∈ G, it is easy to verify that the set {f ∈ F :< f − fc, g >≥ 0} is a closed halfspace
that contains fc. By Assumption 2.1, Dip(fc,Pθ ,F ,< ·, · >,G) = infg∈G,||g||=1 Pθ [f ∈ F :<
f − fc, g >≥ 0] ≥ 1/2. Assume h(�= fc) ∈ F satisfies that Dip(h,Pθ ,F ,< ·, · >,G) > 1/2.
Then for any g ∈ G,Pθ [f ∈ F :< f − h, g >≥ 0] > 1/2. Hence, Pθ is also H-symmetric
about h, contradicting to Assumption 2.1 that fc is unique. Therefore, Dip(fc,Pθ ,< ·, · >

,G) = supfobs∈F Dip(fobs,Pθ ,< ·, · >,G).
(c) P-3: For any fobs(�= fc) ∈ F , we need to prove that for any α ∈ (0, 1),

inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈f − fobs, g〉 ≥ 0

]
≤ inf

g∈G,||g||=1
Pθ

[
f ∈ F : 〈f − (fc + α(fobs − fc)), g〉 ≥ 0

]
.

In fact, note that fc ∈ {f ∈ F :< f − fobs, g >≥ 0} ⇔ fc ∈ {f ∈ F :< f − (fc + α(fobs −
fc)), g >≥ 0}. By Assumption 2.1, we only need to consider g such that the halfspace does
not contain fc. Therefore,

inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈f − fobs, g〉 ≥ 0

]
= inf

g∈G,||g||=1,〈fc−fobs,g〉<0
Pθ

[
f ∈ F : 〈f − fobs, g〉 ≥ 0

]
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≤ inf
g∈G,||g||=1,〈fc−fobs ,g〉<0

Pθ

[
f ∈ F : 〈f − fobs, g〉 ≥ (1 − α)〈fc − fobs, g〉

]
= inf

g∈G,||g||=1,〈fc−fobs,g〉<0
Pθ

[
f ∈ F : 〈f − (fc + α(fobs − fc)), g〉 ≥ 0

]
≤ inf

g∈G,||g||=1
Pθ

[
f ∈ F : 〈f − (fc + α(fobs − fc)), g〉 ≥ 0

]
.

(d) P-4:

Dip(fobs,Pθ ,F , 〈·, ·〉,G) = inf
g∈G,||g||=1

Pθ

[
f ∈ F : 〈f − fc, g〉 ≥ 〈fobs − fc, g〉

]
= inf

g∈G,||g||=1
Pθ

[
f ∈ F : 〈f , g〉 ≥ 〈fobs, g〉

] ≤ Pθ

[
f ∈ F : 〈f , fobs〉 ≥ 〈fobs, fobs〉

]
≤ Pθ

[
f ∈ F :

√
〈f , f 〉〈fobs, fobs〉 ≥ 〈fobs, fobs〉

]
(Cauchy inequality)

= Pθ

[
f ∈ F : ‖f ‖ ≥ ‖fobs‖

] → 0 (as ‖fobs‖ → ∞)

�

Appendix 8. Proof of Theorem 4.1

Proof: Throughout the proof, we use letter C to denote some constant whose meaning may change
from line to line. According to Lemma 14 in Tran (2008), we haveE‖K̂ − K‖2∞ ≤ C n−1. Therefore,
by Markov’s inequality

P(‖K̂ − K‖∞ ≥ log n√
n

) ≤
( √

n
log n

)2

E(‖K̂ − K‖2∞) ≤ C(log n)−2 → 0.

LetA denote the event {‖K̂ − K‖∞ ≤ log n√
n }. Then, P(A) → 1 as n → ∞.

Recall that in Algorithm I, we set λ̂p,n = 0 if λ̂p,n is less than a threshold δn satisfying δn → 0 and

δn ≥ C(
√
n

log n )
− β

2β+1 . Then for a sufficiently large n, we have δn ≥ 2 log n√
n . Consequently, the Mn =

arg maxm{λm ≥ δn} as defined in Equation (5) satisfies Mn → ∞ as n → ∞. In addition, using
Assumption 2.1, we have

C1M
−β
n ≥ λMn ≥ δn ≥ C

( √
n

log n

)− β
2β+1

, C2(Mn + 1)−β ≤ λMn+1 < δn,

implyingC′
1 δ

−1/β
n ≤ Mn ≤ C′

2 δ
−1/β
n ≤ C(

√
n

log n )
1

2β+1 . In addition, under eventA, we have, byWeyl’s
theorem and the definition ofMn, that

arg max
1≤p≤Mn

|λ̂p,n − λp| ≤ ‖K̂ − K‖∞ ≤ log n√
n

≤ δn

2
≤ λMn

2
≤ λp

2
,

where in the last step we have used the fact that λp is a nonincreasing sequence. Consequently, λ̂p,n ≥
λp
2 holds for each p = 1, . . . ,Mn.
By Proposition 16 in Tran (2008) and our Assumption 2.1 on the eigenvalues, we obtain that for

each p = 1, . . . ,Mn,

‖φ̂p,n − φp‖ ≤ C
min{λp−1 − λp, λp − λp+1}‖K̂ − K‖∞

≤ C
p−(β+1) ‖K̂ − K‖∞ ≤ Cpβ+1 log n√

n
≤ CMβ+1

n
log n√

n
.
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By combining this with the bound onMn, we obtain

‖φ̂p,n − φp‖ ≤ C δ
− β+1

β
n

log n√
n

≤ C
n

β+1
4β+2− 1

2

(log n)(β+1)/(2β+1) log n = Cn
−β
4β+2 (log n)

β
2β+1 → 0.

By the Cauchy–Schwarz inequality, for any p ∈ {1, . . . ,Mn},
|〈fobs, φ̂p,n〉2 − 〈fobs,φp〉2| = |〈fobs, φ̂p,n + φp〉〈fobs, φ̂p,n − φp〉|

≤ ‖fobs‖2(‖φ̂p,n‖ + ‖φp‖)‖φ̂p,n − φp‖
= 2‖fobs‖2‖φ̂p,n − φp‖.

Combing the last two displays, we obtain

|〈fobs, φ̂p,n〉2 − 〈fobs,φp〉2| ≤ C‖fobs‖2 pβ+1 log n√
n

≤ C‖fobs‖2 n
−β
4β+2 (log n)

β
2β+1 ,

and for each p = 1, 2, . . . ,Mn,∣∣∣∣∣ 〈fobs, φ̂p,n〉2 − 〈fobs,φp〉2
λp

∣∣∣∣∣ ≤ C‖fobs‖2 p2β+1 log n√
n

≤ C‖fobs‖2M2β+1
n

log n√
n

≤ C‖fobs‖2.

Now we are ready to prove Equation (8). By Assumption 4.2, it is easy to verify that the

series
∑∞

p=1
〈fobs ,φp〉2

λp
a2p is uniformly convergent for any ‖fobs‖b ≤ 1 (as for N sufficiently large,∑

p≥N
〈fobs ,φp〉2

λp
a2p ≤ N−2α ∑

p≥N
〈fobs ,φp〉2

λp
b2p ≤ N−2α ‖fobs‖b). Therefore, according to Assump-

tion 4.1, for each N ≥ 1, we have
∑∞

p=N+1
〈fobs ,φp〉2

λp
a2p < N−2α and

∑∞
p=N+1 a

2
p < N−2α ∑

p b
2
p ≤

CN−2α . According to the error bounds on λ̂p,n and 〈fobs, φ̂p,n〉, we have that under eventAn,

| 〈fobs, φ̂p,n〉2
λ̂p,n

− 〈fobs,φp〉2
λp

| < C‖fobs‖2
(

δn + N2β+1 log n√
n

)
, p = 1, . . . ,N,∣∣∣∣∣∣

Mn∧n∑
p=N+1

〈fobs, φ̂p,n〉2 − 〈fobs,φp〉2
λp

a2p

∣∣∣∣∣∣ ≤ C ‖fobs‖2
Mn∧n∑
p=N+1

a2p ≤ C ‖fobs‖2 N−2α .

Therefore, we obtain
Mn∧n∑
p=N+1

〈fobs, φ̂p,n〉2
λ̂p,n

a2p ≤ 2
Mn∧n∑
p=N+1

〈fobs, φ̂p,n〉2
λp

a2p

≤ 2

∣∣∣∣∣∣
Mn∧n∑
p=N+1

〈fobs, φ̂p,n〉2 − 〈fobs,φp〉2
λp

a2p

∣∣∣∣∣∣ +
Mn∧n∑
p=N+1

〈fobs,φp〉2
λp

a2p ≤ CN−2α ,

where the first inequality is due to λ̂p,n ≥ λp/2 for all p ≤ Mn.
Putting pieces together, we can conclude that

∣∣∣‖fobs‖2 ˆmod
− ‖fobs‖2mod

∣∣∣ =
∣∣∣∣∣∣
Mn∧n∑
p=1

〈fobs, φ̂p,n〉2
λ̂p,n

a2p −
∞∑
p=1

〈fobs,φp〉2
λp

a2p

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
N∑
p=1

(
〈fobs, φ̂p,n〉2

λ̂p,n
− 〈fobs,φp〉2

λp

)
a2p

∣∣∣∣∣∣ +
∞∑

p=N+1

〈fobs,φp〉2
λp

a2p
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+
Mn∧n∑
p=N+1

〈fobs, φ̂p,n〉2
λ̂p,n

a2p

< C
(
N−2α + δn + N2β+1 log n√

n

)
.

By choosing N = (
log n√

n )−(2α+2β+1), we have |‖fobs‖2 ˆmod
− ‖fobs‖2mod| ≤ n−κ for κ = 2α/(2α +

2β + 1) > 0 under eventA. �

Appendix 9. Proof of Theorem 4.2 and Theorem 4.3

A.3 Proof of Theorem 4.2

Proof: According to the proof of theorem 4.1, there exists some eventA whose probability tending
to one as n → ∞, such that under this event∣∣‖g‖ ˆmod − ‖g‖mod

∣∣ ≤ C n−κ ‖g‖b
for all g such that ‖g‖b ≤ ∞ (note that ‖g‖mod is always dominated by ‖g‖b according to Assump-
tion 4.2). Under this condition, we have the following inclusion relationships:{‖gp‖mod ≥ ‖fobs‖mod − Cn−κ (‖gp‖b + ‖fobs‖b)

}
⊂ {‖gp‖ ˆmod ≥ ‖fobs‖m̂od

}
⊂ {‖gp‖mod ≥ ‖fobs‖mod + Cn−κ (‖gp‖b + ‖fobs‖b)

}
.

According to Assumption 4.3 and a standard tail probability bound for the max of sub-Gaussian
random variables, we have P(maxp=1,...,n ‖gp‖b ≤ Cσ

√
log n) ≥ 1 − n−1 for some constant C> 0.

Let B to denote this event. Then, under eventA ∩ B, we have

Un = n−1
n∑

p=1
1‖gp‖mod≥‖fobs‖mod+εn ≤ 1

n

n∑
p=1

1‖gp‖ ˆmod≥‖fobs‖m̂od ≤ Vn = 1
n

n∑
p=1

1‖gp‖mod≥‖fobs‖mod−εn ,

where εn = Cn−κ
√
log n. By Markov inequality, we have

P

(∣∣Un − (
1 − F((‖fobs‖mod + εn)

2)
)∣∣ ≤ log n√

n

)
≥ 1 − C

log2 n
,

P

(∣∣Vn − (
1 − F((‖fobs‖mod − εn)

2)
)∣∣ ≤ log n√

n

)
≥ 1 − C

log2 n
.

Let C denote the intersection of the two events inside above probabilities, and E = A ∩ B ∩ C. Then
P(E) → 1 as n → ∞, and under this event En, we have

1 − F((‖fobs‖mod + εn)
2) ≤ 1

n

n∑
p=1

1‖gp‖ ˆmod≥‖fobs‖m̂od ≤ 1 − F((‖fobs‖mod − εn)
2).

This implies the claimed result by using the fact that F is a continuous function and εn → 0 as
n → ∞. �

A.4 Proof of Theorem 4.3

Proof: By the Markov inequality, given the data D, the conditional probability

P

⎛⎝∣∣∣∣∣∣ 1N
N∑
p=1

1‖gp‖ ˆmod≥‖fobs‖ ˆmod
− (

1 − Fn(‖fobs‖ ˆmod)
)∣∣∣∣∣∣ ≤ logN√

N

∣∣∣∣∣∣ D
⎞⎠ ≥ 1 − C/(logN)2,



356 W. ZHAO ET AL.

where the randomness in P is due to the bootstrap sampling, and for any t> 0,

Fn(t) = P

⎛⎝ Mn∑
p=1

a2pZ
2
p ≤ t2

∣∣∣∣∣∣ D
⎞⎠ ,

only dependent on Mn (defined in Equation 5), is the probability that a weighted sum of squares
of the first Mn standard normal random variables {Zp}∞p=1 are less than or equal to t. By taking
expectation with respect to D on both sides, we can further obtain

P

⎛⎝∣∣∣∣∣∣ 1N
N∑
p=1

1‖gp‖ ˆmod≥‖fobs‖ ˆmod
− (

1 − Fn(‖fobs‖ ˆmod)
)∣∣∣∣∣∣ ≤ logN√

N

⎞⎠ ≥ 1 − C/(logN)2,

where now the randomness in P is due to both the randomness in dataD and the randomness in the
bootstrap sampling. In addition, function F in the desired limit is

F(t) = P

⎛⎝ ∞∑
p=1

a2pZ
2
p ≤ t2

⎞⎠ .

According to Theorem 4.1, we have |‖fobs‖ ˆmod − ‖fobs‖mod| ≤ C n−κ with probability tending to one
as n → ∞. Therefore, due to the continuity of F in t, it remains to show that for each t ∈ R,

Fn(t) → F(t) in probability as n → ∞.

In fact, according to Assumption 4.2 and the fact thatMn → ∞ as n → ∞, we have

E

⎡⎣ ∞∑
p=Mn+1

a2pZ
2
p

⎤⎦ =
∞∑

p=Mn+1
a2p ≤ M−2α

n

∞∑
p=Mn+1

bp → 0

as n → ∞. This implies the convergence in probability of
∑Mn

p=1 a
2
pZ2

p to
∑∞

p=1 a
2
pZ2

p as n → ∞.
Then the desired convergence of Fn to F is a consequence of the fact that convergences in probability
imply convergences in distribution. �
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