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Abstract: Statistical depth is widely used as a powerful tool to measure the center-outward rank of
multivariate and functional data. Recent studies have introduced the notion of depth to the temporal
point process, which exhibits randomness in the cardinality as well as distribution in the observed
events. The proposed methods can well capture the rank of a point process in a given time interval,
where a critical step is to measure the rank by using inter-arrival events. In this paper, we propose to
extend the depth concept to multivariate spatial point process. In this case, the observed process is in a
multi-dimensional location and there are no conventional inter-arrival events in the temporal process.
We adopt the newly developed depth in metric space by defining two different metrics, namely the
penalized metric and the smoothing metric, to fully explore the depth in the spatial point process. The
mathematical properties and the large sample theory, as well as depth-based hypothesis testings, are
thoroughly discussed. We then use several simulations to illustrate the effectiveness of the proposed
depth method. Finally, we apply the new method in a real-world dataset and obtain desirable
ranking performance.

Keywords: statistical depth; spatial point process; point process metric; hypothesis test; supervised
classification
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1. Introduction

Spatial point process is used to model and analyze patterns of a list of location points
within a spatial domain; it has broad applications in various fields [1]. A lot of real-world
data can be considered as realizations of spatial point processes such as spatial locations of
an earthquake and its aftershocks, shooting positions of a basketball player in a single match,
and car accident locations occurring in a city within a day. Common spatial models can be
used to estimate the intensity function or the K-function of the point process [2], examine
the nearest neighbors (NN) of any given point to build the NN distance distribution [3]
and identify latent features [4,5] or investigate the cluster and inhibition phenomenon of
point occurrence [6,7]. These methods mainly focus on representations and modelings of
point patterns, but they have limited use in addressing statistical summaries and inferences
in the space of the point process. For instance, given all shot positions of a basketball
player, one can ask fundamental questions such as (1) “What is the typical or untypical
shooting pattern of this player in a single match?” (2) “Does the shooting pattern show
differences between the made and missed shots?” Statistical depth provides an ideal tool to
answer those questions due to its ability to define a center-outward ranking for the shooting
positions across all matches. In this paper, we aim to define the important notion of depth
to the multi-dimensional spatial point process observations. For illustrative purposes,
we only focus on two-dimensional spatial point process in a finite domain in this paper,
whereas our approach can be naturally extended to higher dimensions. To our knowledge,
this study is the first exploration to investigate the notion of statistical depth on the spatial
point process.
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Depth has been studied for decades to build a center-outward ranking for differ-
ent types of data. Tukey [8] first introduced depth for multivariate data in a Euclidean
space. From then on, a number of depth methods on multivariate data have been pro-
posed, which include simplicial depth [9], Mahalanobis depth [10] and zonoid depth [11].
Over a decade ago, the research on depth started to focus on functional observations.
López-Pintado and Romo [12] proposed the concept of functional depth for the first time.
Nieto-Reyes [13] thoroughly examined the mathematical properties of functional depth. In
recent years, depth was introduced to the data in a more complicated non-linear metric
space. Dai et al. [14] extended the traditional Tukey’s depth to Riemannian and general
metric space, and Geenens et al. [15] introduced a new depth in any metric space with a
more efficient computation. In addition, a lot of progress has been made in ranking obser-
vations from the temporal point process space. The generalized Mahalanobis depth [16]
was the first depth method defined on the temporal point process. In Qi et al. [17], Dirichlet
depth was proposed to overcome the boundary issue, and in Xu et al. [18] a smoothing
approach was adopted to define depth using a functional depth on the smoothed process.
In Zhou et al. [19], ILR depth was developed via the classical Isometric Log-Ratio (ILR)
transformation to address the non-Euclidean issues in the point process space.

Despite the progress of statistical depth for temporal point process, the investigations
on depth for the spatial point process are still under-explored. For the temporal point
process, the depth on point locations can be defined based on the equivalent inter-event
intervals [16,17,19]. However, this approach is not applicable in the spatial case due to
the lack of point order and notion of inter-event. Therefore, in this paper, we consider a
different approach and directly study the interaction among the entire spatial point process
in the space. To achieve this goal, we propose two different proper metrics (namely the
penalized metric and the smoothing metric) to measure the distance between any point
processes. Then, we adopt a newly developed metric-based method [15] to define the depth
on the spatial point process.

One significant advantage of this new method is that it is model-free. When computing
the depth value, it is not necessary to first characterize the intensity function, whose
estimation procedure is often demanding. In this case, the depth is only dependent on a
metric between processes, obtained by point cardinality and point distribution directly.
Another advantage is that by using the smoothing metric, the new depth exploits the
cardinality and distribution under one framework, and a proper center-outward rank for a
set of spatial data is naturally provided. This is in contrast to previous studies [17,19], where
cardinality and distirubtion are combined in a weighted form and the weight coefficient
may vary with respect to data.

We emphasize that the center-outward rank or importance of spatial point observa-
tions cannot be formulated by conventional likelihood methods [20]. We briefly illustrate
this fact with the following example: We let x be a realization of homogeneous Poisson
process on [0, 1]2. Then, its likelihood is given as f (x) = αβn(x), where α, β > 0 are two
parameters and n(x) counts the cardinality in x. In this case, any realization with the same
cardinality shares the same likelihood value regardless of point locations. Even though a
process with uniformly distributed points should be considered as a typical, or important,
example, it is not straightforward to quantify such importance with the likelihood function.
A toy example is shown in Figure 1 to illustrate the comparison between the typical and po-
tentially outlier pattern of a homogeneous Poisson process. Since the points are expected to
be uniformly distributed within the domain, the realization in blue is naturally considered
more typical compared to the one in red.

Once the center-outward rank is well defined, the corresponding depth-based analyses
and inferences can be directly utilized. First, using the depth value, it is straightforward
to check the typical and outlier patterns of the spatial data. This technique is useful for
anomaly detection of spatial data. Next, depth has been widely adopted in conducting
hypothesis testing for data samples. In this paper, we introduce a depth-based test approach
to compare the distributions between spatial data groups. In addition, we generalize
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the multivariate-based Depth–Depth classifier [21] to spatial point process to conduct
supervised classification on simulations and real data.

Figure 1. Comparison of typical and outlier homogeneous Poisson processes with Cardinality 4. Blue
and red dots represent the typical and outlier processes, respectively.

The rest of this paper is organized as follows. In Section 2, we provide a detailed
construction of two metrics for the spatial point process. Then, a formal definition of
spatial metric depth is given and the corresponding mathematical properties are examined.
Furthermore, a depth-based hypothesis testing method is introduced to compare the
distributions of two point process groups. In Section 3, simulation studies are conducted
to illustrate the effectiveness of the newly developed depth. In Section 4, we adopt a real
dataset to demonstrate the spatial metric depth in capturing typical patterns. Finally, the
summary and future work are described in Section 5. All mathematical proofs are shown
in Appendices A–E.

2. Methodology

In this section, we first introduce two proper metrics to measure the spatial point
process distance. Then, we formally define a depth for the spatial point process. To
make the new methods practically useful, we focus on observations from a simple, finite
point process.

2.1. Penalized Metric

A realization of spatial point process can be viewed as a set of finite, non-overlapping
points in a fixed domain. For simplicity, the domain is specified as [0, 1]2 in this paper.
To measure the dissimilarity between two different sets, we first adopt the renowned
Hausdorff distance to address the problem. We let s and t be two finite point processes in
[0, 1]2; the Hausdorff metric dH(s, t) between s and t is given as

dH(s, t) = max
{

max
si∈s

de(si, t), max
ti∈t

de(ti, s)
}

,

where de(si, t) measures the Euclidean distance between point si and the closest point in t,
and similarly for de(ti, s). However, although the Hausdorff metric can capture the spatial
point distances, it ignores the cardinalities of the processes. That is, as long as the point
locations of the two sets are close to each other, their Hausdorff distance will be small.
To compare events from two spatial point processes, we should compare not only their
distributions but also their cardinalities, namely the numbers of events in both processes.

To overcome this problem, we introduce a penalized metric to take into account the
importance on cardinality. The formal definition is given as follows:

Definition 1. Let s = {s1, s2, . . . , sm} and t = {t1, t2, . . . , tn} be two spatial point processes in
domain [0, 1]2 with cardinalities of m and n, respectively. Then, the penalized metric dPH(s, t)
between s and t is defined as

dPH(s, t) = max
{

sup
si∈s

de(si, t), sup
ti∈t

de(ti, s)
}
+ λ|m − n|,
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where de(si, t) measures the Euclidean distance between si and the closest point event in t, and
similarly for de(ti, s). λ ≥ 0 is a hyper-parameter.

Remark 1. Compared with the conventional Hausdorff metric, the penalized version in Definition 1
includes a penalty term to emphasize the cardinality difference between two spatial point processes.
Hyper-parameter λ controls the penalty effect. We emphasize that the computational cost of penalized
distance is O(mn). This cost is independent of the shape of the domain (i.e., same cost for any
domain other than [0, 1]2).

It is straightforward to verify that the penalized metric is indeed a proper metric.
That is, it satisfies positiveness, symmetry, and triangle inequality. The formal proof is
provided in Appendix A. Therefore, the penalized metric provides an appropriate criterion
to measure the spatial point process distance and can be further used to define the notion
of depth.

Although the penalized metric provides a proper distance measure between spatial
point processes with efficient computation, there are still two apparent drawbacks that
may affect its performance. (1) In Definition 1, the distribution of spatial points and their
cardinality are considered separately and their contribution to the distance is balanced by
hyper-parameter λ. Hence, an appropriate value of λ has to be precisely determined in
practical use. (2) The penalized metric is sensitive to extreme outliers. A single distant
outlier may dominate metric measurement. In the next subsection, we introduce an
alternative approach to define the metric between spatial point processes to overcome
these issues.

2.2. Smoothing Metric

In this subsection, we introduce a new metric for the spatial point process which is
less sensitive to outliers. Furthermore, the point distribution and cardinality of the point
process are integrated under one framework.

2.2.1. Mapping between Spatial Point Process and Bivariate Function

For each spatial point process, we first transform it to a multivariate function by
a smoothing kernel, and then adopt the L2 functional metric to define the distance. In
this paper, the transformed function is called the smoothed function or the smoothed
point process. Xu et al. [18] first adopted a Gaussian kernel function for the temporal
point process within a given domain, and then used the conventional L2 metric on the
smoothed functions. However, this distance involves numerical integration as there is
no closed-form expression available in general. The computational cost is manageable
for a one-dimensional temporal domain, whereas the cost can be highly demanding for
multivariate spatial point processes due to the curse of dimensionality.

To address this problem, we adopt a different approach when transforming a spa-
tial point process to a bivariate function. Given finite domain [0, 1]2, we first adopt the
inverse of the sigmoid function to bijectively transform the point processes from the finite
domain to R2. In this case, given any spatial point process s = {s1, s2, . . . , sn}, where
si = (xi, yi) for i = 1, . . . , n, the transformed point process s∗ = {s∗1 , s∗2 , . . . , s∗n} is in R2,

where s∗i = (x∗i , y∗i ) =
(

log
( xi

1−xi

)
, log

( yi
1−yi

))
for i = 1, . . . , n. Here, we ignore the points

on the boundary lines by assuming that the realization points are within (0, 1)2 almost
surely (this is true for commonly used point processes). Next, a proper kernel function
needs to be defined on the transformed point process in the infinite domain. We propose
to adopt the conventional Gaussian kernel function. Using the same notation as above,
the Gaussian kernel function is applied on each point event of the transformed process s∗

as follows:

K(s∗i ) = K
(
(x∗i , y∗i )

)
= c1e−c2

(
x∗i

2+y∗i
2
)

, i = 1, · · · , n (1)
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where c1 and c2 are two positive hyper-parameters that control the kernel scale and width,
respectively.

Next, we introduce the mapping between the spatial point process and a bivariate
function via the Gaussian kernel function in Equation (1). First, we denote Sk as the
space of the spatial point process with cardinality k in domain [0, 1]2, that is, Sk = {s =
{s1, s2, . . . , sk} =

{
(x1, y1), . . . , (xk, yk)

}
| (xi, yi) ∈ [0, 1]2, i = 1, . . . , k}. Therefore, S =

∪∞
k=0Sk is the space of all spatial point processes. We note that if cardinality k = 0, there is no

event in the certain point process. Next, we denote S∗
k as the space of the transformed point

processes with cardinality k by the inverse of the Sigmoid function, which is S∗
k =

{
s∗ =

{s∗1 , . . . , s∗k} =
{
(x∗1 , y∗1), . . . , (x∗k , y∗k )

}
| (x∗i , y∗i ) ∈ R2, i = 1, . . . , k

}
. Then, S∗ = ∪∞

k=0S∗
k is

the space of all transformed processes.
Based on the kernel function, the smoothing function can be formally introduced in

the following definition:

Definition 2. For any spatial point process s in domain [0, 1]2 with cardinality k, we denote s∗ as
its transformed process in an infinite domain by the inverse of the Sigmoid function. Smoothing
function fs : R2 → R is given in the following form:

fs(x, y) =
k

∑
i=1

K
(
(x, y)− s∗i

)
,

where K(·) is the Gaussian kernel function in Equation (1).

In the remaining part of this paper, we call fs the smoothed process of s. The space of
the smoothed processes with cardinality k can be defined as Fk =

{
fs : R2 → R | s ∈ Sk

}
.

Thus, F = ∪∞
k=0Fk is the space of the smoothed process with any cardinality. We note that if

k = 0, then fs(x, y) = 0 is a constant function in F0. Similarly to the result on the temporal
point process in [18], we can show that the mapping from the spatial point process space
S to the space of the smoothed process F is a bijection. Mathematical details are given in
Appendix B.

2.2.2. Definition of Smoothing Metric

In this subsection, we define the smoothing metric for the spatial point process. We
propose to adopt the conventional L2 distance and directly apply it on the smoothed
processes. The definition is given as follows.

Definition 3. Given two spatial point processes s and t in domain [0, 1]2, we denote the smoothed
processes of s and t as fs and ft, respectively. The smoothing distance between s and t is given in
the following form:

dF(s, t) = ∥ fs − ft∥2,

where ∥ · ∥2 denotes the conventional L2 distance.

With the Gaussian kernel in Equation (1), the distance can be given in a closed form in
the following proposition, where the mathematical proof is shown in Appendix C.

Proposition 1. For point processes s =
{
(x1, y1), . . . , (xm, ym)

}
and t =

{
(u1, v1), . . . ,

(un, vn)
}

in domain [0, 1]2, we denote the transformed processes as s∗ =
{
(x∗1 , y∗1), . . . , (x∗m, y∗m)

}
and t∗ =

{
(u∗

1 , v∗1), . . . , (u∗
n, v∗n)

}
, where m and n are the cardinalities of s and t, respectively. The

smoothing distance in Definition 3 can be given in the following closed form:
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dF(s, t) =

(
c2

1π

2c2
·
( m

∑
i=1

m

∑
j=1

e−
c2
2 [(x∗i −x∗j )

2+(y∗i −y∗j )
2]

+
n

∑
i=1

n

∑
j=1

e−
c2
2 [(u∗

i −u∗
j )

2+(v∗i −v∗j )
2] − 2

m

∑
i=1

n

∑
j=1

e−
c2
2 [(x∗i −u∗

j )
2+(y∗i −v∗j )

2]
)) 1

2

,

where c1 and c2 are two hyper-parameters in Equation (1).

Remark 2. The closed-form metric in Proposition 1 is a significant advantage in terms of compu-
tational efficiency in a spatial domain. Compared with numerical integration, computational cost
is reduced from O(N2mn) to O(mn), where N is the grid size for numerical estimation. Hyper-
parameter c1 controls the overall magnitude and has the same impact on any process. c2 plays a
more important role in each individual process. If c2 is too large or small, then the point locations
become less influential when determining distance. It makes the point locations more meaningful
when c2 takes an appropriate value. Optimization approaches such as a cross-validation may be
applied to find suitable values for c2 in practical use.

Based on the bijective mapping between point process and its smoothed function,
the smoothing metric is a proper metric and can be directly applied to conduct the depth
method. Compared with the penalized metric, this option provides a more robust metric
measurement. However, one disadvantage is that it has a higher requirement for the shape
of the domain. When the domain is a general rectangle, [a, b]× [c, d], it is still convenient
to conduct domain transformation. If the domain is not rectangle-shaped, then there is
no straightforward transformation to expand the bounded domain to R2. In this case, a
numerical method with grids has to be implemented to approximate the functional integral,
which significantly increases computational cost.

2.3. Spatial Metric Depth for Spatial Point Process

In this section, we introduce the definition of metric-based depth for the spatial point
process and study its mathematical properties. Geenens et al. [15] introduced the notion
of depth for any abstract metric space. This depth can be applied to measure the center-
outward rank of any object sample as long as there is a proper metric for the object space.
Therefore, with two proper metrics for the spatial point process, we are able to formally
define the metric-based depth for the spatial point process as follows.

Definition 4. We denote (S, d) as the metric space for all spatial point processes in domain [0, 1]2

with respect to probability measure P ∈ P , where d is the metric for the point process and P is the
space of all probability measures for the spatial point process in [0, 1]2. Given any s ∈ S, the spatial
metric depth of s with respect to (S, d) is defined as

D(s) = D(s, P) = P
(

d(p, q) > max
{

d(s, p), d(s, q)
})

. (2)

By definition, the depth value of each process varies with respect to the selected metric.
This provides more flexibility to build the center-outward ranking. Since different metrics
focus on distinct aspects of the process, one can create the ranking framework by adopting
the most appropriate metric based on specific goals. In this paper, we adopt both the
penalized metric and the smoothing metric to evaluate the depth value and compare their
performances.

To further explore the depth framework, we first examine the depth mathematical
properties of spatial metric depth. Details are given below, in Proposition 2. Based on
the result in the general metric space Geenens et al. [15], we present four mathematical
properties specifically for the point process. A more detailed interpretation of the properties
is given in Appendix D.
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Proposition 2. The spatial metric depth in Definition 4 satisfies the following properties:

• (P1) Linear invariance: For point processes in any general rectangular domain, Definition 4
can still be adopted to define the depth value via the two metrics. We let s = {s1, s2, . . . , sn} =
{(x1, y1), (x2, y2), . . . , (xn, yn)} be an arbitrary point process in [0, 1]2 without overlapping
points. We suppose a and c are any positive numbers, and b and d are any real numbers. We

denote U =

(
a 0
0 c

)
, w = [b, d]T and s′ = {Usi + w}n

i=1 in domain [b, a + b]× [d, c + d].

Then, D(s, P) = D(s′, UP + w).
• (P2) Vanishing at infinity: For any s ∈ (S, d), depth value D(s) → 0 if the cardinality of s

rises to infinity.
• (P3) Continuity in s: For any P ∈ P , s ∈ (S, d) and ϵ > 0, there exists δ > 0 such that

supt:d(s,t)<δ |D(t, P)− D(s, P)| < ϵ.
• (P4) Continuity in P: For any P ∈ P , s ∈ (S, d) and ϵ > 0, there exists δ > 0 such that

|D(s, P)− D(s, Q)| < ϵ P—almost surely for all Q ∈ P with dP (P, Q) < δ P—almost
surely, where dP measures the topology of weak convergence on P .

The four properties given above have clear correspondents in the multivariate
depth [22]. P1 corresponds to “affine invariance”, which illustrates that the depth value
should be invariant under linear transformation. P2 corresponds to “vanishing at infin-
ity”. In this paper, the point process approaches infinity under two conditions: (1) car-
dinality tends to infinity; (2) point locations move close to the domain boundary. In
Appendix D, we show that the depth value becomes 0 only when the first condition holds.
P3 and P4 correspond to the “continuity” property. Since the metric is designed and there
exists proper probability measure on point processes [1], these two properties are naturally
established.

Moreover, as illustrated in Geenens et al. [15], the important depth properties “maxi-
mality at center” and “monotonicity relative to the deepest point” may not hold for metric
depth. In general, the definition of symmetry is unclear if there is no concrete assumption
on the space structure. In the case of the spatial point process, the randomness exists in both
cardinality and location. It is not straightforward to find a general “center” for processes.
However, if cardinality is given, the notion of symmetry in multivariate data may be further
explored to define a “conditional center”.

Before spatial metric depth can be adopted in practice, large sample theory should
be discussed. Definition 4 is given for population depth. In most cases, the population
probability measure of the spatial point process sample is unknown, and an empirical
probability measure is used to substitute the population one. We suppose there is an
independent sample of point processes {si; i = 1, . . . , n}. We denote P̂n as the empirical
probability measure corresponding to these observations. Then, P̂n is the collection of 1

n
weighted point masses at s1, . . . , sn. Thus, given any point process s, the empirical depth is
given as

D(s, P̂n) =
1
(n

2)
∑
i<j

I
{

d(si, sj) > max
{

d(s, si), d(s, sj)
}}

. (3)

For each process s, we have its population depth in Equation (2) and sample depth
in Equation (3). One natural and important question is on consistency—does the sample
depth converge to the population one in a large sample? Our answer to this question is a
“Yes” and this result is summarized in the following proposition, where the proof is shown
in Appendix E.

Proposition 3. Sample depth D(s, P̂n) in Equation (3) converges to population depth D(s, P) in
Equation (2) almost surely. That is,

lim
n→∞

D(s, P̂n) = D(s, P) a.s.
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When we illustrate the proposed depth using simulations and real data in the next
section, we adopt the empirical version to compute the depth value. It is worth mentioning
that the metric depth built by Geenens et al. [15] is not the only metric-based depth
framework so far. Dai et al. [14] also introduced Tukey’s depth for the general metric
space. This depth framework adopts the idea of the classical Tukey’s halfspace depth [8]
to construct a metric-based depth formula. The mathematical theory for Tukey’s metric
depth is well formulated, whereas its computational cost is much more expensive. For this
reason, we adopt sample depth Equation (3) with the metric depth in Geenens et al. [15] to
rank spatial point process observations.

2.4. Depth-Based Hypothesis Testing

In this section, we introduce a depth-based hypothesis testing method to compare
two point processes. Hypothesis testing has been an important application of depth on
multivariate data. Liu and Singh [10] introduced a distribution-dependent depth-based
hypothesis test to compare two groups of multivariate observations. This method is only
applicable for multivariate data with specific distribution (mainly for normal distribution
and its extended forms). Wilcox [23] proposed two distribution-free test approaches for
two-group multivariate data as an extension. There were also previous studies focusing on
the hypothesis test on the point process. Berman [24] introduced a test approach to check
whether there exists association between a point process and other stochastic processes
based on the Poisson assumption. Schoenberg [25] conducted a non-parametric test to
investigate the separability of a spatial–temporal marked point process. Guan [26] proposed
a formal method to test the stationarity of the spatial point process. In a recent study,
Fuentes-Santos et al. [27] introduced a non-parametric test to compare patterns between
two groups of processes by estimating their intensity functions.

To our knowledge, the testing method in this paper is the first study examining the
spatial point process using a depth framework. We adopt a nonparametric permutation
approach to test whether two groups of point process observations are from the same
distribution. This approach only depends on the depth values in both groups, which can
be obtained by the spatial metric depth in this paper. That is, we consider the following
hypothesis test for two groups (g1 and g2 with sample sizes m and n, respectively) of point
processes:

• H0: The two groups of point process realizations follow the same distribution;
• H1: The two groups of point process realizations do not follow the same distribution.

Our testing algorithm is given in Algorithm 1. This testing approach is based on the
newly defined depth on the point process with a standard permutation test framework. It
utilizes the common testing procedure comparing multivariate data and generalizes the
testing objects to point process data by using spatial metric depth.

If the testing result rejects the null hypothesis, then a follow-up classification method
can be conducted to distinguish the point process groups. The studies on depth-based
classification have been extensively conducted for decades. Liu [9] first introduced a
simple maximum-depth classifier. Then, Li et al. [21] improved it and designed the well-
known Depth–Depth (DD) classifier by finding an optimal boundary function in the DD
plot [28]. A follow-up study [29] boosted the DD classifier by considering the second-order
interaction of two groups’ depth values and proposed the DDα classifier. In a recent study,
Zhou and Wu [30] further improved the DD classifier by restricting monotonicity of the
boundary function and first applied it on the classification of temporal point processes. In
the following sections, we use simulation and real data to demonstrate the effectiveness of
the proposed testing method and evaluate the classification performance by the improved
DD classifier.
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Algorithm 1 Hypothesis testing algorithm based on spatial metric depth

Input: m point process realizations from Group 1, denoted as g1; n realizations from
Group 2, denoted as g2; hyper-parameter B for permutation test.
- Let g1 be the sample for the empirical distribution P̂n in Equation (3). Compute the
spatial metric depth value of each realization in g1, and denote the set of depth values as
d1. Then, compute the depth value of each realization in g2 and denote them as d2;
- Calculate the Kolmogorov–Smirnov (KS) statistic between d1 and d2 and denote it as K;
- Combine g1 and g2 as one point process group g with sample size m + n. Initialize a
counting index c = 0;
for i = 1 to B do

- Randomly resample (without replacement) m realizations from g and denote them as
g1, and then denote the remaining n realizations as g2;
- Recalculate depth values d1 and d2 of g1 and g2 based on the sample distribution of
g1, and then obtain the KS statistic between d1 and d2 as K′;
if K < K′ then

- c = c + 1;
end if

end for
- Obtain the first p-value p1 = c

B ;
- Repeat all previous steps by swapping the roles of g1 and g2 and obtain the second
p-value p2;
- Compute p by conducting the Benjamini–Hochberg correction between p1 and p2;
Output: p is the final p-value.

3. Simulation Illustrations

In this section, we conduct simulation studies to illustrate the spatial metric depth
via various types of spatial point processes. We examine and compare data from the Cox
process, the Poisson process, the hard core process, and the Strauss process in two examples.

3.1. Example 1: Log Gaussian Cox Process and Homogeneous Poisson Process

First, we illustrate the depth ranking result on simulations from a Log Gaussian Cox
process (LGCP) group and a homogeneous Poisson process (HPP) group. To simulate
LGCP realizations, the first step is to create a Gaussian random field in the given domain.
We design a random field, Y ∈ [0, 1]2, such that close locations have relatively higher
correlations, while far-away ones have relatively lower correlations. In this example, the
mean is given as a constant, m(ξ) = E(Y(ξ)) = 1.7, and the covariance is defined as
a Laplacian kernel, C(ξ, η) = Cov(Y(ξ), Y(η)) = 3e−5∥ξ−η∥, ξ, η ∈ [0, 1]2. Here, ∥ · ∥
indicates Euclidean distance in R2.

Once the mean and covariance are obtained, it is straightforward to generate random
field Y. Next, a Poisson process s driven by the intensity function µ∗ = exp(Y) is the
anticipated LGCP realization. In this case, the log-intensity varies in different realizations.
Two example heatmaps of the log-intensity functions are shown in Figure 2. From the
heatmaps, we can find that both larger and smaller values occur in clear clusters. This
coincides with the covariance design such that points close to each other have higher
correlations.

According to the mean m(·) and covariance C(·, ·) of the LGCP [31], the population

mean of the intensity function is given as µ(ξ) = E(exp(Y(ξ))) = em(ξ)+ C(ξ,ξ)
2 . That is,

the expected intensity µ(ξ) is a constant function e3.2 ≈ 24.53. In this study, we propose
to adopt this constant to simulate a sample of a homogeneous Poisson process (HPP) as
comparison. This can be treated as a first-order approximation to the LGCP. That is, two
groups of point processes are simulated as follows:

• Group 1 (LGCP): 1000 independent LGCP realizations on [0, 1]2 with the Gaussian
random field given above;
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• Group 2 (HPP): 1000 independent HPP realizations in [0, 1]2 with constant intensity
function µ = e3.2.

(a) Example 1 (b) Example 2

Figure 2. Heatmap examples of log-intensities from different LGCP realizations.

Next, the proposed spatial metric depth is applied to provide a center-outward ranking
for the two groups. Hyper-parameters λ and c2 are chosen as 0.05 and 1, respectively (this
is based on a cross-validation procedure and details are provided later in this section). Since
c1 has no impact on the depth value, it is fixed as a constant one throughout this paper.
For the LGCP Group, the histogram of the cardinalities is given in Figure 3a with mean
24 and median 18, respectively. The cardinality distribution is right-skewed with extreme
outliers. Figure 3b,c shows the typical and outlier patterns based on the penalized metric
and the smoothing metric, respectively. The typical patterns exhibit a distinct clustering
phenomenon: if there exists one point in a certain area, then it is more likely to have
multiple points alongside with it. The cardinalities of the typical patterns are around 15–20,
which follows median cardinality. The outlier patterns are straightforward to distinguish
with apparently more or less points.
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Figure 3. Simulation results of the LGCP Group and the HPP Group. (a) Histogram of the cardinalities
of the 1000 simulated processes in the LGCP Group. (b) Typical and outlier patterns with top and
bottom 3 depth values using the penalized metric on the first and second rows, respectively. (c) Same
as (b) except for the smoothing metric. (d–f) Same as (a–c) except for the HPP Group.

For the HPP Group, the histogram of the cardinalities is given in Figure 3d. Based
on the definition of HPP, the cardinality follows a Poisson distribution. Since the sample
size is large, the distribution is nearly symmetric, the bell shape with both sample mean
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and median close to 24. The typical and outlier patterns are shown in Figure 3e,f for
the two metrics, respectively. Compared with the result of the LGCP Group, the typical
patterns are more uniformly distributed within the domain with less clusters. The points
are able to cover most of the region of the domain. The outliers exhibit significantly
different cardinalities.

We then conduct the proposed hypothesis tests in Section 2.4 to evaluate whether
the spatial metric depth is capable of capturing the distribution information of the two
groups. Here, three types of comparisons are conducted, where the first two types are for
within-group comparison, and the third one is for across-group comparison.

1. A uniformly random subsample with size 100 from Group 1 vs. another uniformly
random subsample with size 100 from Group 1.

2. A uniformly random subsample with size 100 from Group 2 vs. another uniformly
random subsample with size 100 from Group 2.

3. A uniformly random subsample with size 100 from Group 1 vs. a uniformly random
subsample with size 100 from Group 2.

For each of the above three types, we repeat the testing procedures in Algorithm 1
50 times with a significance level of 0.05. For Type 1, 47 and 50 experiments show non-
significant results for the penalized metric and the smoothing metric, respectively. Similarly
for Type 2, 48 and 46 p-values are greater than 0.05 for both metrics. In general, around 5%
of the total experiments show a false positive result. This coincides with the pre-specified
significance level of 0.05. To further examine the capability of the depth function, Type 3
is conducted to evaluate statistical power. In this case, none of the p-values from the
50 repetitions are higher than 0.05 for both metrics. Therefore, spatial metric depth can
capture the distribution information of point processes appropriately and demonstrate
significant efficacy in distinguishing processes between different distributions.

Since there exists significant difference between the distributions of Groups 1 and 2, a
classification with the DD classifier is conducted for them. For each group, 75% realizations
are randomly selected as training data and the remaining 25% are used as test data. Then, a
five-fold cross-validation is applied inside the training data with classification accuracy
as the metric to determine hyper-parameter values. Both λ and c2 vary in a large range
{0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}. This leads to the optimal values of λ = 0.05 and c2 = 1.
Next, the DD classifier can be built on the whole training data. The test results are shown
in Figure 4 in the DD plot. The test accuracies are 79.4% and 89.8% for the penalized metric
and the smoothing metric, respectively. These high accuracies indicate the practicability of
this newly proposed depth framework.
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(a) Test result with the penalized metric (b) Test result with the smoothing metric

Figure 4. Test result of the DD classifier with two metrics, where the x-axis and y-axis are for the
depth value in the LGCP Group and the HPP Group, respectively (denoted as D1 and D2). Blue
circle indicates the realization in the LGCP Group, and the red star is for the HPP Group. The black
curve represents the trained boundary of the DD classifier. (a) Test result with the penalized metric.
(b) Same as (a) except for the smoothing metric.
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3.2. Example 2: Hard Core Process and Strauss Process

In this second example, we generate realizations from the Hard core process (HCP)
and the Strauss process (SP). The Hard core process is similar to the homogeneous Poisson
process except that it has one more parameter r that prohibits any two points within
distance r. For a finite Hard core process s, the density function is given as f (s) =
exp

(
∑u∈s V1(u) + ∑u,v∈s V2(u, v)

)
, where

V1(u) = log β V2(u, v) =

{
0 if ∥u − v∥ > r
−∞ if ∥u − v∥ ≤ r

The Strauss process has “soft inhibition” between neighbouring pairs of points [1] by
changing the V2 term as V2(u, v) = (log γ)1(∥u − v∥ ≤ r), where 0 ≤ γ ≤ 1 and 1(·) is
the indicator function. In this case, if γ = 0, then the Strauss process is equivalent to the
Hard core process. If γ = 1, then the Strauss process has identical distribution with the
homogeneous Poisson process with intensity β. The simulation groups are given as below.

• Group 3 (HCP): 1000 independent Hard core processes in domain [0, 1]2 with β = 15
and r = 0.1.

• Group 4 (SP): 1000 independent Strauss processes in domain [0, 1]2 with β = 15,
r = 0.1 and γ = 0.5.

Analogous to the previous example, a cross-validation is applied to first determine
the hyper-parameters with the same CV range, and the optimal result is λ = 0.05 and
c2 = 0.05. Then, the ranking results are shown in Figure 5. The cardinality of the Hard
core process shows a nearly symmetric distribution centered at about 10 and 11, which is
well captured by the typical patterns. Comparing those typical patterns with the result of
HPP, the points are again located uniformly within the domain in both cases. However,
unlike in HPP, there are no points close to each other, which follows the property of the
Hard core process. The outlier processes differ mainly in cardinalities for both metrics.
Similar to the Hard core process, the cardinality of the Strauss process shows symmetric
distribution centered at around 12. The typical patterns show points uniformly distributed
within the domain, albeit with points close to each other. This result follows the definition
of the Strauss process that it relaxes the restriction of the occurrence of neighboring points.
On the other hand, the cardinalities of the outlier patterns are significantly different from
the typical ones.
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Figure 5. Simulation result of the HCP Group and the SP Group. (a) Histogram of the cardinalities of
the 1000 simulated processes in the HCP Group. (b) Typical and outlier patterns with top and bottom
3 depth values using the penalized metric on the first and second row, respectively. (c) Same as
(b) except for the smoothing metric. (d–f) Same as (a–c) except for the result of the SP Group.
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Next, several hypothesis tests and classifications are conducted to distinguish the Hard
core process and the Strauss process with different γ values. The two hyper-parameter
values are kept the same as before for convenience. The result is shown in Figure 6. The
difference between the Hard core process and the Strauss process becomes more distin-
guishable when γ is increasing from 0 to 1. Both metrics exhibit more testing power when
γ is increasing and achieve a 70% testing power when γ is beyond 0.7. The classification
shows better performance as γ becomes larger. When γ is close to zero, the two groups
show high similarity with each other, which introduces confusion to the classifier. When
γ approaches one, the accuracy achieves 70%. The performance demonstrates a decre-
ment compared with the previous classification example due to the significant relationship
between the two groups of processes.
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(a) Rejection counts in hypothesis tests (b) Classification accuracies

Figure 6. Hypothesis test and classification result between the Hard core process and the Strauss
process. (a) The counts of rejection time among 50 tests with the variation in the value of γ. The
blue and red curve represent the count results with the penalized metric and the smoothing metric,
respectively. (b) The classification accuracies in both metrics with the value of γ varying from 0 to 1.

Based on the two simulation results, it can be concluded that the proposed depth
approach provides an effective way to rank and separate commonly used spatial point
processes. In the next section, a real-world dataset example is analyzed to further exhibit
the applicability of this new method.

4. Real Data Analysis

In this section, we apply the spatial metric depth framework on a real dataset. We
collect the data of the shot positions of NBA players in each match of the Season 2018–
2019, and each shot is recorded as “made” or “missed”. In this case, all made shots are
by one player in one match form a single spatial point process. This is also the case for
missed shots. The spatial domain is constrained as the standard half basketball court. For
illustrative purposes, we select two well-known NBA players with different court positions
and playing styles, Giannis Antetokounmpo and James Harden, to evaluate whether their
made and missed shots exhibit different patterns. For simplicity, we only demonstrate the
results with a smoothing metric.

Giannis Antetokounmpo and James Harden played 72 and 78 matches in that season,
respectively, which leads to a sample size of 72 for both made and missed groups of
Giannis Antetokounmpo, and 78 for both groups of James Harden. Similar to the previous
simulation examples, a five-fold cross-validation is first conducted to determine the value
of c2 from the range of {0.001k | k = 1, 2, . . . , 1000} and leads to c2 = 0.782 for Giannis
Antetokounmpo and 0.736 for James Harden. The ranking result is shown in Figure 7.
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Figure 7. The typical and outlier patterns for made and missed shots of Giannis Antetokounmpo
and James Harden. (a) The made shot positions exhibition of Giannis Antetokounmpo. The first
row shows the shot positions (in blue) of the three typical matches, the second row shows the shot
positions (in red) of the three outlier matches. (b) Same as (a) except for the missed shots. (c,d) Same
as (a,b) except for the result of James Harden.

From typical patterns (with top three depth values) in Panels (a) and (b), we can see
that Giannis Antetokounmpo’s shot positions exhibit clear difference between made and
missed groups. It shows that he is more successful when shooting under the basket and
within the three-second zone. Although it is not common, he may make some attempts
outside the three-point line in a single match. If a three-point ball is attempted, he is more
confident to shoot from the head (slightly towards to right wing) than other positions.
Giannis Antetokounmpo may also shoot outside the three-second zone and within the
three-point line, but it is more likely to result in a missed shot. In contrast, as shown in
Panels (c) and (d), it is not straightforward to summarize the difference between James
Harden’s made shot positions and missed ones. He prefers to shoot from the head of the
key to the position around the two corners. It appears that he lacks proficiency in shooting
from the two corners since it usually leads to a missed shot there. If James Harden enters
the three-point line, he seldom shoots outside the three-second zone. Instead, he takes
the ball to enter the restricted area near the basket and attempts to finish a layup. By
comparing the typical patterns between these two players, we can conclude that Giannis
Antetokounmpo prefers to attack under the basket while James Harden is more active
outside the three-point line. Moreover, James Harden attempts more shots in a single match
than Giannis Antetokounmpo, which indicates that basketball may be predominantly led
by guards rather than forwards or centers.

Next, a hypothesis test is conducted to examine whether the made and missed shot
positions come from the same point process. Unlike the previous simulation examples,
the made and missed shot positions are paired instead of independent data. Thus, it is
necessary to modify the test procedures in Algorithm 1 to make it appropriate for these
data. In this case, when resampling the observations from the original two groups in each
repetition, we just randomly swap (with 50% probability) the made and missed processes
from one match to reform the two groups. All other steps remain the same. The experiment
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shows the p-value equal to zero for both Giannis Antetokounmpo and James Harden,
which shows that both players have their preferable shot positions. Since shot position
distribution varies between the two groups, the DD classifier is built to separate them.
For each player, 75% matches are randomly selected as training data and the remaining
matches are test data. The test result is shown in Figure 8. The test accuracies are 92% and
75% for Giannis Antetokounmpo and James Harden, respectively. The classifier shows
better performance for Giannis Antetokounmpo since his made and missed shot positions
exhibit greater distinction.

(a) Giannis Antetokounmpo (b) James Harden

Figure 8. Test classification result between made and missed shot positions. The x-axis and y-axis are
for the depth value in the made and missed group, respectively. Blue circle indicates the realization
in the made group, and the red star is for the missed group. The black curve represents the trained
boundary of the DD classifier. (a) Test result for shot positions of Giannis Antetokounmpo. (b) Same
as (a) except for James Harden.

The above analysis demonstrates the similarity and difference between made and
missed shot positions for the two NBA players. More shooting patterns can be examined
when more information is available; for example, we can collect the shot positions of a team
in a season to study the team’s offensive style or collect the shot positions of an opponent
team to work on defense preparation.

5. Summary and Future Work

In this paper, we introduced a new framework to define depth for the spatial point
process. The definition can be divided into two parts: (1) definition of a proper metric
between the spatial point processes and (2) definition of the depth based on the proper
metric. We proposed two types of proper metrics, the penalized metric and the smoothing
metric, to measure the process distance. The metric properties and computational issues
were extensively discussed. Simulations and a real dataset were applied to illustrate the
effectiveness of the novel depth. We also compared similarities and differences between
the two metrics.

To our knowledge, the spatial metric depth is the first attempt to define depth for the
spatial point process. The entire framework is model-free and performs with high flexibility
and efficiency to deal with different types of processes. Moreover, unlike the previous inter-
arrival-event-based studies on temporal point process, the spatial metric depth regards
the cardinality and event distribution as a whole under one unified framework to define
the depth value. The spatial metric depth also provides a powerful method to conduct
outlier detection of the spatial data by its natural center-outward ranking. The proposed
depth-based hypothesis test provides a new tool to examine the similarity among point
process groups. If the difference is identified, a DD classifier can be adopted as a powerful
classification tool.

There are clear topics to further investigate in the future.First, the mathematical
properties of the spatial metric depth are still incomplete. There is no clear symmetry in the
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process space to define a “center of maximum”. Second, the model-free depth framework
is flexible but lacks power in capturing the data pattern. A more specific depth framework,
i.e., depth for the Poisson process, LGCP, etc., can be explored to extract spatial information
for specific data groups. Finally, the current depth focuses on the spatial point process, but
not the temporal information of each point. Future research will be conducted to study both
spatial and temporal variabilities for more complex point processes, such as earthquake
data, in real applications.
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Appendix A. Proof of the Properties of the Penalized Metric

The proof of the four properties is shown below:

• Nonnegativity: Trivial.
• Zero distance of a point process with itself: Trivial.
• Symmetry: Trivial.
• The Triangle Inequality: We suppose there are three point processes a, b, c with cardi-

nality k, m, n, respectively. Then, based on the fact that the conventional Hausdorff
metric is a proper metric, we have

dPH(a, b) = dH(a, b) + λ|k − m|
≤ dH(a, c) + dH(b, c) + λ|k − m|
= dH(a, c) + dH(b, c) + λ(|k − n + n − m|)
≤ dH(a, c) + dH(b, c) + λ(|k − n|+ |m − n|)
= dPH(a, c) + dPH(b, c)

Appendix B. Proof of the Bijection Mapping between Point Process and Its
Smoothed Process

Given any point process s = {s1, s2, . . . , sn} in [0, 1]2, it is trivial to show that the
transformation via the inverse of the Sigmoid function is bijective. Thus, we focus on the
proof that the mapping between transformed process s∗ = {s∗1 , s∗2 , . . . , s∗n} =

{
(x∗1 , y∗1), . . . ,

(x∗n, y∗n)
}

and its smoothed process fs(x, y) = ∑k
i=1 K

(
(x, y)− s∗i

)
is bijective. Before the

proof of bijection, the prerequisite shown below is necessary to verify:

• Kernel function K(s∗i ) in Equation (1) is linearly independent: for any n ∈ N+,
∑n

i=1 αiK
(
(x, y)− s∗i

) .
= 0 for (x, y) ∈ R2 ⇐⇒ α1 = · · · = αn = 0.

Proof of =⇒: We suppose ∑n
i=1 αiK

(
(x, y)− s∗i

)
= c1 ∑n

i=1 αie−c2[(x−x∗i )
2+(y−y∗i )

2] .
= 0

and there is no overlapping points. Then, we have

0 .
= c1

n

∑
i=1

αie−c2[x2+y2−2xx∗i −2yy∗i +x∗i
2+y∗i

2]

=
n

∑
i=1

αie−c2(x∗i
2+y∗i

2)e2c2x∗i xe2c2y∗i y

=
n

∑
i=1

piqx
i hy

i
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where pi = αie−c2(x∗i
2+y∗i

2), qi = e2c2x∗i and hi = e2c2y∗i for i = 1, 2, . . . , n. We denote
g(x, y) = ∑n

i=1 piqx
i hy

i ; since g(x, y) .
= 0, we have

g(x, y) = p1qx
1hy

1 + p2qx
2hy

2 + · · ·+ pnqx
nhy

n
.
= 0

We suppose there exists subset {p(1), p(2), . . . , p(r)} ⊂ {pi}n
i=1 such that p(j) ̸= 0 for

j = 1, 2, . . . , r. Then, we have

g(x, y) = p(1)q
x
(1)h

y
(1) + p(2)q

x
(2)h

y
(2) + · · ·+ p(r)q

x
(r)h

y
(r)

.
= 0

Here, {q(j)}r
j=1 are permuted in a decreasing order. If there exist a and b (a < b) such

that q(a) = q(a+1) = · · · = q(b), then {h(j)}b
j=a will be permuted in a decreasing order.

Next, two different cases are considered separately. (1) We assume q(1) is the unique
maximum one among {q(j)}r

j=1; since q(j) > 0 for j = 1, 2, . . . , r, we have

p(1)
( q(1)

q(1)

)xhy
(1) + p(2)

( q(2)
q(1)

)xhy
(2) + · · ·+ p(r)

( q(r)
q(1)

)xhy
(r)

.
= 0 (A1)

We let x → ∞, then p(1)h
y
(1)

.
= 0. Since h(j) > 0 for j = 1, 2, . . . , r, then p(1) = 0.

This contradicts the assumption that p(j) ̸= 0 for j = 1, 2, . . . , r. Therefore, pi = 0 for
i = 1, 2, . . . , n, which leads to the conclusion that αi = 0 for i = 1, 2, . . . , n.

(2) We assume q(1), q(2), . . . , q(k) shares the same maximum value among {q(j)}r
j=1,

then h(1) must be the unique maximum value among {h(j)}k
j=1 since there are no overlap-

ping points. Next, based on Equation (A1), we let x → ∞; we have p(1)h
y
(1) + p(2)h

y
(2) +

· · · + p(k)h
y
(k)

.
= 0. We divide both sides with hy

(1) and let y → ∞; we have p(1) = 0.
Again, this contradicts the initial assumption and leads to the conclusion that αi = 0 for
i = 1, 2, . . . , n holds.

Proof of ⇐=: If αi = 0 for i = 1, 2, . . . , n, then it is straightforward to verify that for any
n ∈ N+, ∑n

i=1 αiK
(
(x, y)− s∗i

) .
= 0 for (x, y) ∈ R2.

Next, we move on to prove the bijection mapping between the transformed process
and its smoothed process.

Surjection: Based on the definition of the space of the smoothed process, if there exists
a non-constant function f ∈ F, then there must be a transformed process s∗ = {s∗1 , . . . , s∗k}
such that f = ∑k

i=1 K
(
(x, y)− s∗i

)
. Therefore, the surjection is verified.

Injection: We suppose there are two transformed processes s∗ and t∗ with cardi-
nality m and n, respectively; their corresponding smoothed processes are fs(x, y) =

∑m
i=1 K((x, y) − s∗i ) and ft(x, y) = ∑n

j=1 K((x, y) − t∗j ). We suppose fs(x, y) .
= ft(x, y);

then, we have

0 .
= fs(x, y)− ft(x, y)

=
m

∑
i=1

K((x, y)− s∗i )−
n

∑
j=1

K((x, y)− t∗j )

Since the kernel is linearly independent and none of the coefficients are zero, then the
equation holds if m = n and {s∗i }m

i=1 = {t∗j }n
j=1. Thus, the two transformed process are

identical and the injection is verified.
Therefore, the mapping process between the original point process and its smoothed

process is bijective.
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Appendix C. Proof of Proposition 1

Based on Equation (1) and Definition 2, for the given spatial point processes s and t
and their transformed point processes s∗ and t∗, respectively, the square of the L2 distance
of their smoothed processes is

dF(s, t)2 = ∥ fs − ft∥2
2

=
∫ ∞

−∞

∫ ∞

−∞

( m

∑
i=1

c1e−c2[(x−x∗i )
2+(y−y∗i )

2] −
n

∑
j=1

c1e−c2[(x−u∗
j )

2+(y−v∗j )
2]
)2

dxdy

=
m

∑
i=1

m

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
c2

1e−c2[(x−x∗i )
2+(y−y∗i )

2+(x−x∗j )
2+(y−y∗j )

2]dxdy

+
n

∑
i=1

n

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
c2

1e−c2[(x−u∗
i )

2+(y−v∗i )
2+(x−u∗

j )
2+(y−v∗j )

2]dxdy

−2
m

∑
i=1

n

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
c2

1e−c2[(x−x∗i )
2+(y−y∗i )

2+(x−u∗
j )

2+(y−v∗j )
2]dxdy

= c2
1

m

∑
i=1

m

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
e−2c2[(x−

x∗i +x∗j
2 )2+ 1

4 (x∗i −x∗j )
2+(y−

y∗i +y∗j
2 )2+ 1

4 (y
∗
i −y∗j )

2]dxdy

+c2
1

n

∑
i=1

n

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
e−2c2[(x−

u∗i +u∗j
2 )2+ 1

4 (u
∗
i −u∗

j )
2+(y−

v∗i +v∗j
2 )2+ 1

4 (v
∗
i −v∗j )

2]dxdy

−2c2
1

m

∑
i=1

n

∑
j=1

∫ ∞

−∞

∫ ∞

−∞
e−2c2[(x−

x∗i +u∗j
2 )2+ 1

4 (x∗i −u∗
j )

2+(y−
y∗i +v∗j

2 )2+ 1
4 (y

∗
i −v∗j )

2]dxdy

=
c2

1π

2c2
·
(

m

∑
i=1

m

∑
j=1

e−
c2
2 [(x∗i −x∗j )

2+(y∗i −y∗j )
2]
+

n

∑
i=1

n

∑
j=1

e−
c2
2 [(u∗

i −u∗
j )

2+(v∗i −v∗j )
2]

−2
m

∑
i=1

n

∑
j=1

e−
c2
2 [(x∗i −u∗

j )
2+(y∗i −v∗j )

2]

)

Then, the result in Proposition 1 is easy to obtain.

Appendix D. Interpretation of the Properties in Proposition 2

The properties are discussed one by one.
(P1): In this paper, the domain of the spatial point process is fixed as [0, 1]2 in order

to simplify illustration. However, the depth formula can be generalized to any rectan-
gular domain with an invariant result. Given any point process s in [0, 1]2, s′ = Us + w
is the transformed result via translation and scaling. In this case, the entire point pro-
cess population is updated by the same parameters. Based on the definition of the
two metrics, for any four processes s, t, p and q, the relationship between d(s, t) and
d(p, q) is preserved after transformation, which leads to the linear invariance result. It
is noteworthy to point out that the value of hyper-parameter λ is necessary to change
in order to preserve the relationship for the penalized metric. In real applications, if
the domain is not [0, 1]2, then we can first normalize the domain before computing the
depth value.

In fact, linear invariance holds in a more general case. We suppose U is any two-
by-two non-singular matrix; then, for any point process s, Us leads to the rotation and
stretch result and the square domain becomes a parallelogram. Then, the inner distance
relationship of any paired points within individual process are still preserved, which results
in the same distance relationship among the processes in the metric space. However, in
the simulation studies and the real data experiment of this paper, we only consider the
point processes in horizontal rectangular domains. Further details of the linear invariance
property in a more general domain are not discussed.
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(P2): Geenens et al. [15] proved that in any metric space, the depth value of an object
becomes zero if the distance between itself and any fixed object approaches infinity. In
this paper, the primary question to address is: If point process t is fixed with cardinality n,
under which conditions of another process s will distance d(s, t) approach infinity? The
answer can be discussed in two aspects.

1. Fix the cardinality of s as a finite integer m; suppose there exists at least one individual
point approaching the boundary of the point process domain. If the smoothing metric
is applied, then dF(s, t) is always finite based on the result in Proposition 1. If the
penalized metric is applied, then dPH(s, t) is finite if the point process domain is
bounded. Thus, d(s, t) is always finite for any process in a bounded domain.

2. The cardinality of s (denoted as m) approaches infinity. In this case, the penalty term
of the penalized metric is infinite, which leads to the infinite value of the distance. For
the smoothing metric, the value is O(m2), which approaches infinity with respect to
m.

Therefore, for any process s, the spatial metric depth value approaches zero if its
cardinality increases to infinity.

(P3): Similar to P2, the continuity property was verified by Geenens et al. [15]. The
remaining question is: Under which conditions will the distance between two processes
s and t be zero? When the smoothing metric is applied, based on the proof in
Appendix B, the smoothed functions of s and t are equivalent if and only if s and t
are identical. Thus, dF(s, t) = 0 is under the condition that s and t have the same cardinal-
ity and point locations. If the penalized metric is applied, then dPH(s, t) ̸= 0 if they own
different cardinalities due to the penalty term. Based on the same cardinality, if there exists
one point in t (denoted as tj) such that the Euclidean distance between tj and all points in s
are not zero, then the first term of the penalized metric is greater than zero. Therefore, for
both of the two metrics, the distance between s and t is zero if and only if s and t share
identical point clouds.

(P4): For any spatial point process s, its counting measure Ns is a measurable map
from a probability space (Ω,A,P) to the outcome space (N,N ). Then, its distribution can
be formally defined as probability measure P on the outcome space as P(A) = P(Ns ∈
A) = P(ω ∈ Ω : Ns(ω) ∈ A), where A ∈ N [1]. This property emphasizes the continuity
on this probability measure.

Appendix E. Proof of Proposition 3

Given any probability measure P, the proof of convergence between sample probability
to population probability is straightforward and given as follows: For a metric space (M, d)
with respect to probability measure P ∈ P , given any subset A ∈ M, the population
probability of A is defined as P(A) =

∫
A dP =

∫
I(X ∈ A)dP. Thus, for an empirical

probability of A defined as P̂n(A) = 1
n ∑n

i=1 I(Xi ∈ A), from the strong Law of Large
Number, we have P̂n(A) → P(A) almost surely if n → ∞.

Based on the result above, the convergence of the empirical spatial metric depth
to the population one is shown as follows: For any s ∈ S and a sample of point pro-

cess si; i = 1, . . . , n ∈ S, the empirical depth is given as D(s, P̂n) = 1
(n

2)
∑i<j I

{
d(si, sj) >

max
{

d(si, s), d(sj, s)
}}

. Thus, based on the strong Law of Large Number and the defini-

tion of population spatial metric depth, D(s, P̂n) converges to D(s, P) almost surely.

References
1. Baddeley, A.; Bárány, I.; Schneider, R. Spatial point processes and their applications. In Stochastic Geometry: Lectures Given at the

CIME Summer School Held in Martina Franca, Italy, 13–18 September 2004; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–75.
2. Waagepetersen, R.; Guan, Y. Two-step estimation for inhomogeneous spatial point processes. J. R. Stat. Soc. Ser. B Stat. Methodol.

2009, 71, 685–702. [CrossRef]
3. Talgat, A.; Kishk, M.A.; Alouini, M.S. Nearest neighbor and contact distance distribution for binomial point process on spherical

surfaces. IEEE Commun. Lett. 2020, 24, 2659–2663. [CrossRef]

http://doi.org/10.1111/j.1467-9868.2008.00702.x
http://dx.doi.org/10.1109/LCOMM.2020.3019436


Mathematics 2024, 12, 595 20 of 20

4. Byers, S.; Raftery, A.E. Nearest-neighbor clutter removal for estimating features in spatial point processes. J. Am. Stat. Assoc.
1998, 93, 577–584. [CrossRef]

5. Pei, T.; Zhu, A.X.; Zhou, C.; Li, B.; Qin, C. Detecting feature from spatial point processes using Collective Nearest Neighbor.
Comput. Environ. Urban Syst. 2009, 33, 435–447. [CrossRef]

6. Bar-Hen, A.; Emily, M.; Picard, N. Spatial cluster detection using nearest neighbor distance. Spat. Stat. 2015, 14, 400–411.
[CrossRef]

7. Al-Hourani, A.; Evans, R.J.; Kandeepan, S. Nearest neighbor distance distribution in hard-core point processes. IEEE Commun.
Lett. 2016, 20, 1872–1875. [CrossRef]

8. Tukey, J.W. Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, Vancouver,
BC, Canada, 21–29 August 1974; Volume 2, pp. 523–531.

9. Liu, R.Y. On a notion of data depth based on random simplices. Ann. Stat. 1990, 18, 405–414. [CrossRef]
10. Liu, R.Y.; Singh, K. A quality index based on data depth and multivariate rank tests. J. Am. Stat. Assoc. 1993, 88, 252–260.
11. Dyckerhoff, R.; Mosler, K.; Koshevoy, G. Zonoid data depth: Theory and computation. In Proceedings of the COMPSTAT; Springer:

Berlin/Heidelberg, Germany, 1996; pp. 235–240.
12. López-Pintado, S.; Romo, J. On the concept of depth for functional data. J. Am. Stat. Assoc. 2009, 104, 718–734. [CrossRef]
13. Nieto-Reyes, A. On the properties of functional depth. In Recent Advances in Functional Data Analysis and Related Topics; Physica:

Heidelberg, Germany, 2011; pp. 239–244.
14. Dai, X.; Lopez-Pintado, S.; Initiative, A.D.N. Tukey’s depth for object data. J. Am. Stat. Assoc. 2023, 118, 1760–1772. [CrossRef]
15. Geenens, G.; Nieto-Reyes, A.; Francisci, G. Statistical depth in abstract metric spaces. Stat. Comput. 2023, 33, 46. [CrossRef]
16. Liu, S.; Wu, W. Generalized mahalanobis depth in point process and its application in neural coding. Ann. Appl. Stat. 2017, 11,

992–1010. [CrossRef]
17. Qi, K.; Chen, Y.; Wu, W. Dirichlet depths for point process. Electron. J. Stat. 2021, 15, 3574–3610. [CrossRef]
18. Xu, Z.; Wang, C.; Wu, W. A unified framework on defining depth for point process using function smoothing. Comput. Stat. Data

Anal. 2022, 175, 107545. [CrossRef]
19. Zhou, X.; Ma, Y.; Wu, W. Statistical depth for point process via the isometric log-ratio transformation. Comput. Stat. Data Anal.

2023, 187, 107813. [CrossRef]
20. Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns; John Wiley & Sons:

Hoboken, NJ, USA, 2008.
21. Li, J.; Cuesta-Albertos, J.A.; Liu, R.Y. DD-classifier: Nonparametric classification procedure based on DD-plot. J. Am. Stat. Assoc.

2012, 107, 737–753. [CrossRef]
22. Zuo, Y.; Serfling, R. General notions of statistical depth function. Ann. Stat. 2000, 28, 461–482.
23. Wilcox, R.R. Two-Sample, Bivariate Hypothesis Testing Methods Based on Tukey’s Depth. Multivar. Behav. Res. 2003, 38, 225–246.

[CrossRef]
24. Berman, M. Testing for spatial association between a point process and another stochastic process. J. R. Stat. Soc. Ser. C Appl. Stat.

1986, 35, 54–62. [CrossRef]
25. Schoenberg, F.P. Testing separability in spatial-temporal marked point processes. Biometrics 2004, 60, 471–481. [CrossRef]

[PubMed]
26. Guan, Y. A KPSS test for stationarity for spatial point processes. Biometrics 2008, 64, 800–806. [CrossRef] [PubMed]
27. Fuentes-Santos, I.; González-Manteiga, W.; Mateu, J. A nonparametric test for the comparison of first-order structures of spatial

point processes. Spat. Stat. 2017, 22, 240–260. [CrossRef]
28. Liu, R.Y.; Parelius, J.M.; Singh, K. Multivariate analysis by data depth: Descriptive statistics, graphics and inference. Ann. Stat.

1999, 27, 783–858. [CrossRef]
29. Lange, T.; Mosler, K.; Mozharovskyi, P. Fast nonparametric classification based on data depth. Stat. Pap. 2014, 55, 49–69.

[CrossRef]
30. Zhou, X.; Wu, W. Depth-Based Statistical Inferences in the Spike Train Space. arXiv 2023, arXiv:2311.13676.
31. Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods; Springer:

New York, NY, USA, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01621459.1998.10473711
http://dx.doi.org/10.1016/j.compenvurbsys.2009.08.001
http://dx.doi.org/10.1016/j.spasta.2015.07.006
http://dx.doi.org/10.1109/LCOMM.2016.2591017
http://dx.doi.org/10.1214/aos/1176347507
http://dx.doi.org/10.1198/jasa.2009.0108
http://dx.doi.org/10.1080/01621459.2021.2011298
http://dx.doi.org/10.1007/s11222-023-10216-4
http://dx.doi.org/10.1214/17-AOAS1030
http://dx.doi.org/10.1214/21-EJS1867
http://dx.doi.org/10.1016/j.csda.2022.107545
http://dx.doi.org/10.1016/j.csda.2023.107813
http://dx.doi.org/10.1080/01621459.2012.688462
http://dx.doi.org/10.1207/S15327906MBR3802_4
http://dx.doi.org/10.2307/2347865
http://dx.doi.org/10.1111/j.0006-341X.2004.00192.x
http://www.ncbi.nlm.nih.gov/pubmed/15180673
http://dx.doi.org/10.1111/j.1541-0420.2007.00977.x
http://www.ncbi.nlm.nih.gov/pubmed/18218065
http://dx.doi.org/10.1016/j.spasta.2017.02.007
http://dx.doi.org/10.1214/aos/1018031260
http://dx.doi.org/10.1007/s00362-012-0488-4

	Introduction
	Methodology
	Penalized Metric
	Smoothing Metric
	Mapping between Spatial Point Process and Bivariate Function
	Definition of Smoothing Metric

	Spatial Metric Depth for Spatial Point Process
	Depth-Based Hypothesis Testing

	Simulation Illustrations
	Example 1: Log Gaussian Cox Process and Homogeneous Poisson Process
	Example 2: Hard Core Process and Strauss Process

	Real Data Analysis
	Summary and Future Work
	Proof of the Properties of the Penalized Metric
	Proof of the Bijection Mapping between Point Process and Its Smoothed Process
	Proof of Proposition 1
	Interpretation of the Properties in Proposition 2
	Proof of Proposition 3
	References

