Books and Book Chapters and Ph.D. Theses
- A. Barbu, S.C. Zhu. Monte Carlo Methods. Springer 2020
(Springer, Amazon)
- A. Barbu, N. Lay, G.Gramajo. Face Detection with a 3D Model. "Academic Press Library in Signal Processing Volume 6: Image and Video Processing and Analysis and Computer Vision".
pp 237-259, 2018. Editors: R. Chellappa and S. Theodoridis.(arxiv, link)
- J. Feulner, A. Barbu. Data-Driven Detection and Segmentation of Lymph Nodes.
In "Medical Image Recognition, Segmentation and Parsing: Machine Learning and Multiple Object Approaches".
Elsevier 2015. Editor: S. K. Zhou.
- L. Ding, A. Barbu. Scalable Subspace Clustering with Application to Motion Segmentation. Current Trends in Bayesian Methodology with Applications, Chapman & Hall/CRC Press.
Editors: Dipak K. Dey, Umesh Singh and A. Loganathan. pp 267-286, 2015 (pdf)
- A. Barbu. Multi-Path Marginal Space Learning for Object Detection.
Academic Press Library in Signal Processing: Volume 4: Image, Video Processing and Analysis,
Hardware, Audio, Acoustic and Speech Processing. pp 271-291, 2013
(pdf)
- A. Barbu. Cluster sampling and its application to segmentation, stereo and motion (Ph.D. thesis, UCLA 2005)
(pdf)
- A. Barbu. On the cohomology of GLn(Fp) with Fp coefficients (Ph.D. thesis, OSU 2000) (pdf)
Journal Publications
- A. Barbu, H. Mou. The Compact Support Neural Network. Sensors 21 No. 24, 8494, 2021.
(arxiv,link)
- M. Wang, A. Barbu. Are screening methods useful in feature selection? An empirical study. PLoS One 14, No. 9 (2019)
(arxiv,link)
- S. Inkoom, J. Sobanjo, A. Barbu, X.Niu. Pavement Crack Rating using Machine Learning Frameworks: Partitioning,
Boostrap Forest, Boosted Trees, Naïve Bayes and K - Nearest Neighbors.
Journal of Transportation Engineering, Part B: Pavements, 145, No 3, 2019.
- S. Inkoom, J. Sobanjo, A. Barbu, X. Niu. Prediction of the Crack Condition of Highway Pavements using Machine Learning Models.
Structure and Infrastructure Engineering, 15, No 7, 940-953, 2019.
- K. O'Brien, W. Introne, O. Akal, T. Akal, A. Barbu, M. McGowan, M. Merideth, S. Seward, W. Gahl, B. Gochuico.
Prolonged Treatment with Open-label Pirfenidone in Hermansky-Pudlak Syndrome Pulmonary Fibrosis. Molecular Genetics and Metabolism
125, No. 1-2, 168-173, September 2018.
- J. Anaya, A. Barbu. RENOIR - A Dataset for Real Low-Light Image Noise Reduction. Journal of Visual Comm. and Image Rep. 51, No. 2, 144-154, 2018(arxiv,
link, data)
- A. Gupta, A. Barbu. Parameterized Principal Component Analysis. Pattern Recognition 78, No. 6, 215–227, 2018(arxiv, link)
- A. Barbu, Y. She, L. Ding, G. Gramajo. Feature Selection with Annealing for Computer Vision and Big Data Learning. IEEE PAMI, 39, No. 2, 272-286, 2017.
(arxiv, link)
- A. Barbu, L. Lu, H. Roth, A. Seff, R. Summers. An Analysis of Robust Cost Functions for Deep CNN in Computer-Aided Diagnosis.
Computer Methods in Biomechanics and Biomedical Engineering, 2016. (pdf)
- A. Barbu, T.F. Wu, Y. N. Wu. Learning Mixtures of Bernoulli Templates by Two-Round EM with
Performance Guarantee. Electronic Journal of Statistics 8, No. 2, 3004-3030, 2014 (pdf, arxiv)
- E. Coyle, R. Roberts, E. Collins, A. Barbu. Synthetic Data Generation for Classification via Uni-Modal Cluster Interpolation.
Autonomous Robots, 37, No. 1, 27-45, 2014.(pdf)
- A. Barbu. Hierarchical Object Parsing from Structured Noisy Point Clouds. IEEE PAMI, 35, No. 7, 1649-1659, 2013.
(pdf, arxiv, slides)
- K. Zhang, E. Collins, A. Barbu. An Efficient Stochastic Clustering Auction for Heterogeneous Robotic Collaborative Teams.
Journal of Intelligent and Robotic Systems 72, 541-558, 2013 (pdf)
- A. Barbu, N. Lay. An Introduction to Artificial Prediction Markets for Classification.
Journal of Machine Learning Research, 13, 2177-2204, 2012.
(pdf)
- A. Barbu, M. Suehling, X. Xu, D. Liu, S. K. Zhou, D. Comaniciu. Automatic Detection and Segmentation of Lymph Nodes from CT Data.
IEEE Trans Medical Imaging, 31, No. 2, 240-250, 2012.(pdf)
- F. Bunea, A. Tsybakov, M. Wegkamp and A.Barbu. SPADES and mixture models. Annals of
Statistics 38, No. 4, 2525-2558, 2010. (pdf)
- F. Bunea and A.Barbu. Dimension reduction and variable selection in case control
studies via regularized likelihood optimization.
Electronic Journal of Statistics, 3,
2009. (pdf)
- A. Barbu. Training an Active Random Field for Real-Time
Image Denoising. IEEE Trans. Image Processing, 18, November 2009. (pdf)
- Y. Zheng,
A. Barbu, B. Georgescu, M. Scheuering and D. Comaniciu.
Four-Chamber Heart Modeling and Automatic Segmentation
for 3D Cardiac CT Volumes Using Marginal Space
Learning and Steerable Features. IEEE Trans Medical Imaging, November
2008. (pdf)
- A. Barbu, S.C. Zhu. Generalizing Swendsen-Wang
for Image Analysis. J. Comp. Graph. Stat. 16, No 4, 2007 (pdf)
- A. Barbu, S.C. Zhu. Generalizing Swendsen-Wang
to sampling arbitrary posterior probabilities, PAMI, 27,
August 2005 (pdf)
- C.V. Ciobanu, A. Barbu, R.M. Briggs. Interactions of carbon
atoms and dimer vacancies on the Si(001) surface. Journal of Engineering Materials and Technology -ASME
127, 462
(2005) (pdf)
- A. Barbu. On the range of non-vanishing
p-torsion cohomology for GLn(Fp), Journal of Algebra, 278, pp 456-472,
August 2004 (pdf,
link)
- A. Barbu. On a conjecture of Ash, Journal of
Algebra, 251,
pp 178-184, May 2002 (pdf,
link)
- A. Barbu.
The ring generated by the elements of degree 2 in H*(Un(Fp),Z ),
Journal of Algebra, 237,
pp 247-261, March 2001 (pdf,
link)
Conference Publications
- H. Huang, A. Barbu. Predicting Lane Change Decision Making with Compact Support. IEEE Intelligent Vehicles Symposium, 2021.
(pdf)
- Y.Guo, A. Barbu. A study of local optima for learning feature interactions using neural networks. IJCNN 2021
(arxiv)
- Y.Guo, Y. She, A. Barbu. Training Efficient Network Architecture and Weights via Direct Sparsity Control. IJCNN 2021
(arxiv)
- B. R. Bartoldson, A. S. Morcos, A. Barbu, G. Erlebacher. The Generalization-Stability Tradeoff in Neural Network Pruning.
Neural Information Processing Systems (NeurIPS), 2020,(arxiv)
- D. Li, A. Barbu. Training a Steerable CNN for Guidewire Detection. CVPR 2020,
(pdf)
- G. Dawer, Y.Guo, A. Barbu. Generating Compact Tree Ensembles via Annealing. IJCNN 2020 (arxiv)
- G. Dawer, Y.Guo, S. Liu, A. Barbu. Neural Rule Ensembles: Encoding Sparse Feature Interactions into Neural Networks.
IJCNN 2020 (arxiv)
- O. Akal, A. Barbu. Learning Chan-Vese. ICIP 2019, Taipei, Taiwan
(pdf)
- D. Li, A. Barbu. Training a CNN for Guidewire Detection. ICIP 2019, Taipei, Taiwan
(pdf)
- O. Akal, A. Barbu, T. Mukherjee, K. George, J. Paquet, E. L. Pasiliao.
A Distributed Sensing Approach for Single Platform Image-based Localization.
International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, 2018
- H. Mou, A. Barbu. Accurate Dictionary Learning with Direct Sparsity Control. ICIP 2018, Athens, Greece
(pdf)
- N. Lay, Y. Tsehay, R. Cheng, S. Gaur, A. Barbu, L. Lu, B. Turkbey, P. Choyke , P. Pinto, R. Summers.
A Decomposable Model for Prostate Cancer Detection in Multi-Parametric MRI. MICCAI, 2018, Granada, Spain
(pdf)
- A. Barbu. A Directed Graph Approach to Active Contours. ICIP 2017 (pdf)
- D. Barbu, A. Barbu. Traditional and Nontraditional Undergraduate Enrollments across All Sectors.
Association for Institutional Research Annual Conference, Washington DC, 2017
- D. Barbu, A. Barbu. Do Macroeconomic and Financial Aid Indicators Impact Graduate Enrollments?
AIR Conference, New Orleans, May 2016
- D. Barbu, A. Barbu. Do Macroeconomic and Financial Aid Indicators Impact Graduate Enrollments?
Florida AIR Conference, St Petersburg, FL, January 2016
- A. Barbu, L. Lu, H. Roth, A. Seff, R.M. Summers. An Analysis of Robust Cost Functions for CNN in Computer-Aided Diagnosis.
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 2016.
(pdf, link)
- A. Seff, L. Lu, A. Barbu, H. Roth, H.C. Shin, R. Summers. Leveraging Mid-Level Semantic Boundary Cues
for Automated Lymph Node Detection. MICCAI 2015 (pdf)
- A. Meyer-Baese, A. Barbu, M. Lobbes, S. Hoffmann, B. Burgeth, A. Kleefeld, U. Meyer-Baese.
Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation.
International Society for Optics and Photonics Conference (SPIE). 2015
- A. Meyer-Baese, D. Fratte, A. Barbu, K. Pinker-Domenig.
Dynamical complex network theory applied to the therapeutics of brain malignancies. SPIE 2015
- A. Barbu, N. Lay. Artificial prediction markets for lymph node detection. EHB 2013
(pdf)
- A. Barbu, M. Pavlovskaia, S.C. Zhu. Rates for Inductive Learning of Compositional Models. AAAI Workshop Replearn 2013.
(pdf)
- L. Ding, A. Barbu, A. Meyer-Baese. Learning a Quality-Based Ranking for Feature Point Trajectories. ACCV 2012
(pdf)
- L. Ding, A. Barbu, A. Meyer-Baese. Motion Segmentation by Velocity Clustering with Estimation of Subspace Dimension. ACCV Workshop DTCE 2012
(pdf)
- K. Zhang, E. Collins, A. Barbu. An Efficient Stochastic Clustering Auction for Heterogeneous Robot Teams.
Int. Conf. on Robotics and Automation (ICRA) 2012.
(pdf)
- W. Wu, T. Chen, A. Barbu, P. Wang, N. Strobel, S. Zhou, D.
Comaniciu. Learning-based Hypothesis Fusion for Robust Catheter
Tracking in 2D X-ray Fluoroscopy. CVPR 2011 (pdf)
- K. Zhang, E. Collins, A. Barbu. Efficient Stochastic Clustering Auctions for Agent-Based Collaborative Systems.
Workshop on Agent Technology in Robotics and Automation, the 2011 International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13, 2011.
- K. Zhang, E. Collins, A. Barbu. A Novel Stochastic Clustering Auction for Task Allocation in Multi-Robot Teams.
IROS 2010. (pdf)
- A. Barbu, M. Suehling, X. Xu, D. Liu, S. K. Zhou, D. Comaniciu.
Automatic Detection and Segmentation of Axillary Lymph Nodes. MICCAI 2010. (pdf)
- N. Lay, A. Barbu. Supervised Aggregation of Classifiers using Artificial Prediction Markets.
ICML 2010 (pdf)
- A. Barbu. Learning Real-Time MRF Inference for Image Denoising. CVPR 2009 (pdf)
- A. Barbu, R. Ionasec. Boosting Cross-Modality Image Registration. URBAN 2009 (pdf)
- A. Meyer-Baese, S. Lespinats, F. Steinbrucker, A. Saalbach, T. Schlossbauer, A. Barbu.
Visual exploratory analysis of DCE-MRI data in breast cancer based on novel nonlinear dimensional data reduction techniques.
SPIE Defense and Security, 2009
- S. Seifert, A. Barbu, S. Zhou, D. Liu, J. Feulner, M. Huber, M. Suehling, A. Cavallaro, D. Comaniciu.
Hierarchical parsing and semantic navigation of full body CT data.
SPIE Medical Imaging, 2009 (pdf)
- L. Lu, A. Barbu, J. Liang, L. Bogoni, M. Salganicoff and D. Comaniciu.
Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography.
ECCV 2008 (pdf)
- L. Lu, A. Barbu, M. Wolf, J. Liang, M. Salganicoff, D. Comaniciu.
Accurate Polyp Segmentation for 3D CT Colonography Using Multi-Staged Probabilistic Binary Learning and Compositional Model.
CVPR 2008.(pdf)
- R. Socher, A. Barbu, D. Comaniciu. A Learning Based Hierarchical Model for Vessel Segmentation.
IEEE International Symposium on Biomedical Imaging, 2008. (pdf)
- Y. Zheng, B. Georgescu, A. Barbu, M. Scheuering and D. Comaniciu.
Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes,
SPIE Medical Imaging, 2008.
- Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, D. Comaniciu.
Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal Space Learning and Steerable Features.
ICCV 2007 (pdf)
- S Lakare, M Wolf, L Bogoni, A. Barbu, M Dundar, L Lu, M Salganicoff.
Evaluation of a Learning-based Component for Suppression of False Positives Located on the Ileo Cecal Valve or Rectal Tube, RSNA 2007
- A. Barbu, V. Athitsos, B. Georgescu, S. Boehm, P. Durlak, D. Comaniciu.
Hierarchical Learning of Curves: Application to Guidewire Localization in Fluoroscopy.
CVPR 2007 (pdf)
- S. Lakare, A. Barbu, M. Dundar, M. Wolf, L. Bogoni, D. Comaniciu.
Learning-based Component for Suppression Rectal Tube False Positives: Evaluation of Performance on 780 CTC Cases,
RSNA 2006 (ppt)
- A. Barbu, L. Bogoni, D. Comaniciu.
Hierarchical Part-Based Detection of 3D flexible tubes:Application to CT Colonoscopy,
MICCAI 2006 (pdf)
- Z. Tu, X.S. Zhou, A. Barbu, L. Bogoni, D. Comaniciu.
Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment,
CVPR 2006 (pdf)
- A. Barbu, S.C. Zhu. Incorporating visual knowledge representation in stereo reconstruction,
ICCV 2005 (pdf)
- A. Barbu, S.C. Zhu. Multigrid and Multi-level Swendsen-Wang Cuts for Hierarchic Graph Partition,
CVPR 2004 (pdf)
- A. Barbu, A.L. Yuille. Motion Estimation by Swendsen-Wang Cuts,
CVPR 2004 (pdf)
- A. Barbu, S.C. Zhu. On the relationship between image and motion segmentation,
SCVMA workshop, ECCV 2004 (pdf)
- A. Barbu, S.C. Zhu. Graph Partition By Swendsen-Wang Cuts,
ICCV 2003 (pdf)